L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·8-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s − 17-s + (−0.499 + 0.866i)20-s + (0.499 + 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·8-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s − 17-s + (−0.499 + 0.866i)20-s + (0.499 + 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.984+0.173i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.984+0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.984+0.173i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.984+0.173i)
|
Particular Values
L(21) |
≈ |
0.8340845676 |
L(21) |
≈ |
0.8340845676 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 13 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+T+T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1−2T+T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.847256767773727751890504112691, −8.147067349588260427593720587206, −7.43696523056642020355814386797, −6.50345091691485241019866969658, −6.03697320626069672989523305737, −4.99029092266473846364041982977, −4.38705127956497898877064514643, −3.53924594738823898427324411818, −1.85521153533964803228598516297, −0.74772087896610239237699025109,
1.11556314710997276798060699167, 2.53906348411582632998367519298, 2.95879858435625949332144194527, 4.24468236848494426573252661155, 4.46155957936761238878387134206, 6.00436858070578905170730733991, 6.78727251764810709667060603029, 7.55553668859962581290153335529, 8.125122896397652423286717724036, 8.979740708451834896787522880861