Properties

Label 2-3240-360.29-c0-0-6
Degree $2$
Conductor $3240$
Sign $0.984 + 0.173i$
Analytic cond. $1.61697$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·8-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s − 17-s + (−0.499 + 0.866i)20-s + (0.499 + 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·8-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s − 17-s + (−0.499 + 0.866i)20-s + (0.499 + 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $0.984 + 0.173i$
Analytic conductor: \(1.61697\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3240} (269, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :0),\ 0.984 + 0.173i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8340845676\)
\(L(\frac12)\) \(\approx\) \(0.8340845676\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 \)
5 \( 1 + (0.5 + 0.866i)T \)
good7 \( 1 + (0.5 + 0.866i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
17 \( 1 + T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
29 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
31 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 - 2T + T^{2} \)
41 \( 1 + (0.5 - 0.866i)T^{2} \)
43 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
47 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + (0.5 + 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.847256767773727751890504112691, −8.147067349588260427593720587206, −7.43696523056642020355814386797, −6.50345091691485241019866969658, −6.03697320626069672989523305737, −4.99029092266473846364041982977, −4.38705127956497898877064514643, −3.53924594738823898427324411818, −1.85521153533964803228598516297, −0.74772087896610239237699025109, 1.11556314710997276798060699167, 2.53906348411582632998367519298, 2.95879858435625949332144194527, 4.24468236848494426573252661155, 4.46155957936761238878387134206, 6.00436858070578905170730733991, 6.78727251764810709667060603029, 7.55553668859962581290153335529, 8.125122896397652423286717724036, 8.979740708451834896787522880861

Graph of the $Z$-function along the critical line