L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·8-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s − 17-s + (−0.499 + 0.866i)20-s + (0.499 + 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·8-s + 0.999·10-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s − 17-s + (−0.499 + 0.866i)20-s + (0.499 + 0.866i)22-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8340845676\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8340845676\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.847256767773727751890504112691, −8.147067349588260427593720587206, −7.43696523056642020355814386797, −6.50345091691485241019866969658, −6.03697320626069672989523305737, −4.99029092266473846364041982977, −4.38705127956497898877064514643, −3.53924594738823898427324411818, −1.85521153533964803228598516297, −0.74772087896610239237699025109,
1.11556314710997276798060699167, 2.53906348411582632998367519298, 2.95879858435625949332144194527, 4.24468236848494426573252661155, 4.46155957936761238878387134206, 6.00436858070578905170730733991, 6.78727251764810709667060603029, 7.55553668859962581290153335529, 8.125122896397652423286717724036, 8.979740708451834896787522880861