L(s) = 1 | + (0.5 − 0.866i)5-s + (−2 − 3.46i)11-s + (−3 + 5.19i)13-s + 6·17-s − 4·19-s + (−0.499 − 0.866i)25-s + (−1 − 1.73i)29-s + (4 − 6.92i)31-s − 2·37-s + (−3 + 5.19i)41-s + (−6 − 10.3i)43-s + (4 + 6.92i)47-s + (3.5 − 6.06i)49-s − 6·53-s − 3.99·55-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.603 − 1.04i)11-s + (−0.832 + 1.44i)13-s + 1.45·17-s − 0.917·19-s + (−0.0999 − 0.173i)25-s + (−0.185 − 0.321i)29-s + (0.718 − 1.24i)31-s − 0.328·37-s + (−0.468 + 0.811i)41-s + (−0.914 − 1.58i)43-s + (0.583 + 1.01i)47-s + (0.5 − 0.866i)49-s − 0.824·53-s − 0.539·55-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(−0.766+0.642i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(−0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
−0.766+0.642i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), −0.766+0.642i)
|
Particular Values
L(1) |
≈ |
0.8042966646 |
L(21) |
≈ |
0.8042966646 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(2+3.46i)T+(−5.5+9.52i)T2 |
| 13 | 1+(3−5.19i)T+(−6.5−11.2i)T2 |
| 17 | 1−6T+17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(1+1.73i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4+6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+(3−5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(6+10.3i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4−6.92i)T+(−23.5+40.7i)T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+(−6+10.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(7+12.1i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2−3.46i)T+(−33.5−58.0i)T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+(−4−6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1+(6+10.3i)T+(−41.5+71.8i)T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.322873086338119079293919003831, −7.76757461116773140042942922589, −6.81364482004581152325026080271, −6.06288676651208876461685178181, −5.32497155985260880778888837747, −4.53925202465065590897985155129, −3.64814705817298084049408065344, −2.60915093873376136705339227485, −1.65092101341958065858140906244, −0.23843500139855372075214458488,
1.39097051699525463643328629306, 2.62052270679392534567657702583, 3.16836673561107486553005468021, 4.40213612816041739260271274480, 5.22566176331012922434777711248, 5.77736851132505997741793556810, 6.85093745763670635652888586003, 7.48022522321709425468438581927, 8.045604733230375329004763712853, 8.910209269918978888702986569809