L(s) = 1 | + (−0.222 + 0.974i)7-s + (0.900 + 0.433i)9-s + (0.376 + 0.781i)11-s + (−0.277 − 0.347i)23-s + (−0.222 − 0.974i)25-s + (0.222 + 0.974i)29-s + (−0.678 + 1.40i)37-s + (−0.900 − 0.433i)49-s + (−1.12 + 1.40i)53-s + (−0.623 + 0.781i)63-s + (0.400 + 0.193i)67-s + (1.12 − 0.541i)71-s + (−0.846 + 0.193i)77-s + (0.376 − 0.781i)79-s + (0.623 + 0.781i)81-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)7-s + (0.900 + 0.433i)9-s + (0.376 + 0.781i)11-s + (−0.277 − 0.347i)23-s + (−0.222 − 0.974i)25-s + (0.222 + 0.974i)29-s + (−0.678 + 1.40i)37-s + (−0.900 − 0.433i)49-s + (−1.12 + 1.40i)53-s + (−0.623 + 0.781i)63-s + (0.400 + 0.193i)67-s + (1.12 − 0.541i)71-s + (−0.846 + 0.193i)77-s + (0.376 − 0.781i)79-s + (0.623 + 0.781i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.264255568\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.264255568\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.222 - 0.974i)T \) |
| 29 | \( 1 + (-0.222 - 0.974i)T \) |
good | 3 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 5 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.376 - 0.781i)T + (-0.623 + 0.781i)T^{2} \) |
| 13 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 23 | \( 1 + (0.277 + 0.347i)T + (-0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 37 | \( 1 + (0.678 - 1.40i)T + (-0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (1.12 - 1.40i)T + (-0.222 - 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 67 | \( 1 + (-0.400 - 0.193i)T + (0.623 + 0.781i)T^{2} \) |
| 71 | \( 1 + (-1.12 + 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 + (-0.376 + 0.781i)T + (-0.623 - 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 97 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.958535430600292714106593189108, −8.282217675240105798364042325683, −7.47363590818375023161561124943, −6.68290604469608675209232229196, −6.09369047018674948919810364532, −4.98122036037618858423559278721, −4.52732743907697331027155568157, −3.41692099026906464755656954287, −2.37750061089451862226181574377, −1.54285825530847634013732895610,
0.808949316077380735617971902848, 1.92882671218186995726524193540, 3.44338176199247014893268001369, 3.81171059014286633142959704676, 4.73662916046925183358453560516, 5.76038718945470313574510302159, 6.53982792378210888558529631643, 7.18520896450438175698033609340, 7.83292294740137829861480640739, 8.699617340441510275370001436011