L(s) = 1 | + (−0.222 + 0.974i)7-s + (0.900 + 0.433i)9-s + (0.376 + 0.781i)11-s + (−0.277 − 0.347i)23-s + (−0.222 − 0.974i)25-s + (0.222 + 0.974i)29-s + (−0.678 + 1.40i)37-s + (−0.900 − 0.433i)49-s + (−1.12 + 1.40i)53-s + (−0.623 + 0.781i)63-s + (0.400 + 0.193i)67-s + (1.12 − 0.541i)71-s + (−0.846 + 0.193i)77-s + (0.376 − 0.781i)79-s + (0.623 + 0.781i)81-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)7-s + (0.900 + 0.433i)9-s + (0.376 + 0.781i)11-s + (−0.277 − 0.347i)23-s + (−0.222 − 0.974i)25-s + (0.222 + 0.974i)29-s + (−0.678 + 1.40i)37-s + (−0.900 − 0.433i)49-s + (−1.12 + 1.40i)53-s + (−0.623 + 0.781i)63-s + (0.400 + 0.193i)67-s + (1.12 − 0.541i)71-s + (−0.846 + 0.193i)77-s + (0.376 − 0.781i)79-s + (0.623 + 0.781i)81-s + ⋯ |
Λ(s)=(=(3248s/2ΓC(s)L(s)(0.357−0.934i)Λ(1−s)
Λ(s)=(=(3248s/2ΓC(s)L(s)(0.357−0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
3248
= 24⋅7⋅29
|
Sign: |
0.357−0.934i
|
Analytic conductor: |
1.62096 |
Root analytic conductor: |
1.27317 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3248(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3248, ( :0), 0.357−0.934i)
|
Particular Values
L(21) |
≈ |
1.264255568 |
L(21) |
≈ |
1.264255568 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.222−0.974i)T |
| 29 | 1+(−0.222−0.974i)T |
good | 3 | 1+(−0.900−0.433i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 11 | 1+(−0.376−0.781i)T+(−0.623+0.781i)T2 |
| 13 | 1+(−0.623+0.781i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.900+0.433i)T2 |
| 23 | 1+(0.277+0.347i)T+(−0.222+0.974i)T2 |
| 31 | 1+(−0.222−0.974i)T2 |
| 37 | 1+(0.678−1.40i)T+(−0.623−0.781i)T2 |
| 41 | 1+T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(0.623−0.781i)T2 |
| 53 | 1+(1.12−1.40i)T+(−0.222−0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.900−0.433i)T2 |
| 67 | 1+(−0.400−0.193i)T+(0.623+0.781i)T2 |
| 71 | 1+(−1.12+0.541i)T+(0.623−0.781i)T2 |
| 73 | 1+(−0.222+0.974i)T2 |
| 79 | 1+(−0.376+0.781i)T+(−0.623−0.781i)T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(−0.222−0.974i)T2 |
| 97 | 1+(−0.900+0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.958535430600292714106593189108, −8.282217675240105798364042325683, −7.47363590818375023161561124943, −6.68290604469608675209232229196, −6.09369047018674948919810364532, −4.98122036037618858423559278721, −4.52732743907697331027155568157, −3.41692099026906464755656954287, −2.37750061089451862226181574377, −1.54285825530847634013732895610,
0.808949316077380735617971902848, 1.92882671218186995726524193540, 3.44338176199247014893268001369, 3.81171059014286633142959704676, 4.73662916046925183358453560516, 5.76038718945470313574510302159, 6.53982792378210888558529631643, 7.18520896450438175698033609340, 7.83292294740137829861480640739, 8.699617340441510275370001436011