L(s) = 1 | + i·2-s − 4-s − 7-s − i·8-s − 9-s + 2·11-s − i·14-s + 16-s − i·18-s + 2i·22-s − i·25-s + 28-s + i·29-s + i·32-s + 36-s + 2·37-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s − 7-s − i·8-s − 9-s + 2·11-s − i·14-s + 16-s − i·18-s + 2i·22-s − i·25-s + 28-s + i·29-s + i·32-s + 36-s + 2·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.201 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.201 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9996140016\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9996140016\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 7 | \( 1 + T \) |
| 29 | \( 1 - iT \) |
good | 3 | \( 1 + T^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 11 | \( 1 - 2T + T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 - 2iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (1 - i)T - iT^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.917921474910340880417822593487, −8.359491086471494577215781495456, −7.34061356570875694463317342982, −6.56059215208243323846002820976, −6.22100396553270048216950933609, −5.47067254707000836751743148612, −4.30516417242503364543832677690, −3.73475825308054763714285040756, −2.74455512367905841630091617610, −0.965233113394577134863110134092,
0.848475870737398988176698540593, 2.13171602887561559556259490452, 3.14137697108325333499900137927, 3.75058086078739729740128362060, 4.51269149323768553180447434665, 5.74654412253157256342506509526, 6.19987342142849872194238143306, 7.15506385365185897838200250574, 8.236280667627223465900401460496, 8.959911730797695258485378241839