L(s) = 1 | + (−0.974 − 0.222i)2-s + (0.900 + 0.433i)4-s + (−0.623 − 0.781i)7-s + (−0.781 − 0.623i)8-s + (0.222 − 0.974i)9-s + (0.0990 + 0.433i)11-s + (0.433 + 0.900i)14-s + (0.623 + 0.781i)16-s + (−0.433 + 0.900i)18-s − 0.445i·22-s + (−1.40 − 0.678i)23-s + (−0.781 − 0.623i)25-s + (−0.222 − 0.974i)28-s + (0.781 + 0.623i)29-s + (−0.433 − 0.900i)32-s + ⋯ |
L(s) = 1 | + (−0.974 − 0.222i)2-s + (0.900 + 0.433i)4-s + (−0.623 − 0.781i)7-s + (−0.781 − 0.623i)8-s + (0.222 − 0.974i)9-s + (0.0990 + 0.433i)11-s + (0.433 + 0.900i)14-s + (0.623 + 0.781i)16-s + (−0.433 + 0.900i)18-s − 0.445i·22-s + (−1.40 − 0.678i)23-s + (−0.781 − 0.623i)25-s + (−0.222 − 0.974i)28-s + (0.781 + 0.623i)29-s + (−0.433 − 0.900i)32-s + ⋯ |
Λ(s)=(=(3248s/2ΓC(s)L(s)(−0.724+0.689i)Λ(1−s)
Λ(s)=(=(3248s/2ΓC(s)L(s)(−0.724+0.689i)Λ(1−s)
Degree: |
2 |
Conductor: |
3248
= 24⋅7⋅29
|
Sign: |
−0.724+0.689i
|
Analytic conductor: |
1.62096 |
Root analytic conductor: |
1.27317 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3248(1371,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3248, ( :0), −0.724+0.689i)
|
Particular Values
L(21) |
≈ |
0.4857302271 |
L(21) |
≈ |
0.4857302271 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.974+0.222i)T |
| 7 | 1+(0.623+0.781i)T |
| 29 | 1+(−0.781−0.623i)T |
good | 3 | 1+(−0.222+0.974i)T2 |
| 5 | 1+(0.781+0.623i)T2 |
| 11 | 1+(−0.0990−0.433i)T+(−0.900+0.433i)T2 |
| 13 | 1+(0.433+0.900i)T2 |
| 17 | 1−iT2 |
| 19 | 1+(−0.222−0.974i)T2 |
| 23 | 1+(1.40+0.678i)T+(0.623+0.781i)T2 |
| 31 | 1+(0.781+0.623i)T2 |
| 37 | 1+(−0.400+1.75i)T+(−0.900−0.433i)T2 |
| 41 | 1−iT2 |
| 43 | 1+(0.623+0.781i)T2 |
| 47 | 1+(0.433+0.900i)T2 |
| 53 | 1+(1.00+0.351i)T+(0.781+0.623i)T2 |
| 59 | 1+iT2 |
| 61 | 1+(0.222−0.974i)T2 |
| 67 | 1+(0.119+0.189i)T+(−0.433+0.900i)T2 |
| 71 | 1+(1.75−0.400i)T+(0.900−0.433i)T2 |
| 73 | 1+(0.781−0.623i)T2 |
| 79 | 1+(0.566+0.900i)T+(−0.433+0.900i)T2 |
| 83 | 1+(−0.974+0.222i)T2 |
| 89 | 1+(0.781+0.623i)T2 |
| 97 | 1+(0.974−0.222i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.675137691603261588530466043675, −7.78990011369042505901492036814, −7.18780971124149122140150718675, −6.43607425107033928361535750204, −5.95871492927116247624757796466, −4.34467127100978390367589275376, −3.76019273938711597013411813092, −2.79751149489010250808362642237, −1.67013315026869209862449704218, −0.39269000606397556428996398437,
1.54520592885330843561989647062, 2.45312071749943158130974069066, 3.32825110508361389622980558004, 4.63499297496160172683160183051, 5.70773938991581841135505496232, 6.08125713895557979743950727664, 6.98558629915933085173009152538, 7.889874896906889848316399528747, 8.253559737825681082815250214471, 9.099371413813116497137421282410