L(s) = 1 | + (−0.974 − 0.222i)2-s + (0.900 + 0.433i)4-s + (−0.623 − 0.781i)7-s + (−0.781 − 0.623i)8-s + (0.222 − 0.974i)9-s + (0.0990 + 0.433i)11-s + (0.433 + 0.900i)14-s + (0.623 + 0.781i)16-s + (−0.433 + 0.900i)18-s − 0.445i·22-s + (−1.40 − 0.678i)23-s + (−0.781 − 0.623i)25-s + (−0.222 − 0.974i)28-s + (0.781 + 0.623i)29-s + (−0.433 − 0.900i)32-s + ⋯ |
L(s) = 1 | + (−0.974 − 0.222i)2-s + (0.900 + 0.433i)4-s + (−0.623 − 0.781i)7-s + (−0.781 − 0.623i)8-s + (0.222 − 0.974i)9-s + (0.0990 + 0.433i)11-s + (0.433 + 0.900i)14-s + (0.623 + 0.781i)16-s + (−0.433 + 0.900i)18-s − 0.445i·22-s + (−1.40 − 0.678i)23-s + (−0.781 − 0.623i)25-s + (−0.222 − 0.974i)28-s + (0.781 + 0.623i)29-s + (−0.433 − 0.900i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.724 + 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.724 + 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4857302271\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4857302271\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.974 + 0.222i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 29 | \( 1 + (-0.781 - 0.623i)T \) |
good | 3 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 11 | \( 1 + (-0.0990 - 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (0.433 + 0.900i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 23 | \( 1 + (1.40 + 0.678i)T + (0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 37 | \( 1 + (-0.400 + 1.75i)T + (-0.900 - 0.433i)T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.433 + 0.900i)T^{2} \) |
| 53 | \( 1 + (1.00 + 0.351i)T + (0.781 + 0.623i)T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 67 | \( 1 + (0.119 + 0.189i)T + (-0.433 + 0.900i)T^{2} \) |
| 71 | \( 1 + (1.75 - 0.400i)T + (0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (0.781 - 0.623i)T^{2} \) |
| 79 | \( 1 + (0.566 + 0.900i)T + (-0.433 + 0.900i)T^{2} \) |
| 83 | \( 1 + (-0.974 + 0.222i)T^{2} \) |
| 89 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 97 | \( 1 + (0.974 - 0.222i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.675137691603261588530466043675, −7.78990011369042505901492036814, −7.18780971124149122140150718675, −6.43607425107033928361535750204, −5.95871492927116247624757796466, −4.34467127100978390367589275376, −3.76019273938711597013411813092, −2.79751149489010250808362642237, −1.67013315026869209862449704218, −0.39269000606397556428996398437,
1.54520592885330843561989647062, 2.45312071749943158130974069066, 3.32825110508361389622980558004, 4.63499297496160172683160183051, 5.70773938991581841135505496232, 6.08125713895557979743950727664, 6.98558629915933085173009152538, 7.889874896906889848316399528747, 8.253559737825681082815250214471, 9.099371413813116497137421282410