Properties

Label 2-325-1.1-c1-0-11
Degree $2$
Conductor $325$
Sign $1$
Analytic cond. $2.59513$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s + 2·7-s − 2·9-s + 2·11-s + 2·12-s − 13-s + 4·14-s − 4·16-s + 2·17-s − 4·18-s + 2·21-s + 4·22-s − 9·23-s − 2·26-s − 5·27-s + 4·28-s + 5·29-s + 2·31-s − 8·32-s + 2·33-s + 4·34-s − 4·36-s − 8·37-s − 39-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 0.755·7-s − 2/3·9-s + 0.603·11-s + 0.577·12-s − 0.277·13-s + 1.06·14-s − 16-s + 0.485·17-s − 0.942·18-s + 0.436·21-s + 0.852·22-s − 1.87·23-s − 0.392·26-s − 0.962·27-s + 0.755·28-s + 0.928·29-s + 0.359·31-s − 1.41·32-s + 0.348·33-s + 0.685·34-s − 2/3·36-s − 1.31·37-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2.59513\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.016363498\)
\(L(\frac12)\) \(\approx\) \(3.016363498\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \)
3 \( 1 - T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 9 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 15 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.93421690815436842914513639852, −11.07632824989305080407651894750, −9.745339411961178288073885758254, −8.647969105414674323103722403718, −7.79278253980066871819257147589, −6.41493871731547586436271874024, −5.50737120413184810439847634712, −4.43338064598993885453060354142, −3.44740587880108288114904722723, −2.21415072325817682075527365861, 2.21415072325817682075527365861, 3.44740587880108288114904722723, 4.43338064598993885453060354142, 5.50737120413184810439847634712, 6.41493871731547586436271874024, 7.79278253980066871819257147589, 8.647969105414674323103722403718, 9.745339411961178288073885758254, 11.07632824989305080407651894750, 11.93421690815436842914513639852

Graph of the $Z$-function along the critical line