Properties

Label 2-325-1.1-c5-0-24
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.77·2-s − 27.1·3-s + 45.0·4-s + 238.·6-s − 203.·7-s − 114.·8-s + 494.·9-s − 494.·11-s − 1.22e3·12-s + 169·13-s + 1.78e3·14-s − 437.·16-s − 1.59e3·17-s − 4.33e3·18-s − 1.10e3·19-s + 5.53e3·21-s + 4.34e3·22-s − 885.·23-s + 3.10e3·24-s − 1.48e3·26-s − 6.82e3·27-s − 9.18e3·28-s + 5.25e3·29-s − 3.15e3·31-s + 7.49e3·32-s + 1.34e4·33-s + 1.40e4·34-s + ⋯
L(s)  = 1  − 1.55·2-s − 1.74·3-s + 1.40·4-s + 2.70·6-s − 1.57·7-s − 0.631·8-s + 2.03·9-s − 1.23·11-s − 2.45·12-s + 0.277·13-s + 2.44·14-s − 0.426·16-s − 1.33·17-s − 3.15·18-s − 0.701·19-s + 2.73·21-s + 1.91·22-s − 0.349·23-s + 1.10·24-s − 0.430·26-s − 1.80·27-s − 2.21·28-s + 1.16·29-s − 0.588·31-s + 1.29·32-s + 2.14·33-s + 2.07·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 + 8.77T + 32T^{2} \)
3 \( 1 + 27.1T + 243T^{2} \)
7 \( 1 + 203.T + 1.68e4T^{2} \)
11 \( 1 + 494.T + 1.61e5T^{2} \)
17 \( 1 + 1.59e3T + 1.41e6T^{2} \)
19 \( 1 + 1.10e3T + 2.47e6T^{2} \)
23 \( 1 + 885.T + 6.43e6T^{2} \)
29 \( 1 - 5.25e3T + 2.05e7T^{2} \)
31 \( 1 + 3.15e3T + 2.86e7T^{2} \)
37 \( 1 - 7.13e3T + 6.93e7T^{2} \)
41 \( 1 + 3.49e3T + 1.15e8T^{2} \)
43 \( 1 - 7.35e3T + 1.47e8T^{2} \)
47 \( 1 - 2.24e4T + 2.29e8T^{2} \)
53 \( 1 - 1.31e4T + 4.18e8T^{2} \)
59 \( 1 - 1.87e4T + 7.14e8T^{2} \)
61 \( 1 - 3.05e4T + 8.44e8T^{2} \)
67 \( 1 + 3.73e4T + 1.35e9T^{2} \)
71 \( 1 + 3.46e4T + 1.80e9T^{2} \)
73 \( 1 - 1.43e4T + 2.07e9T^{2} \)
79 \( 1 - 4.91e4T + 3.07e9T^{2} \)
83 \( 1 + 5.05e4T + 3.93e9T^{2} \)
89 \( 1 + 9.52e4T + 5.58e9T^{2} \)
97 \( 1 - 6.45e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45290890859236867912060551232, −9.625017700817392240163855732134, −8.588698801411153970675401606414, −7.25407119151884432831654332393, −6.56641050646921648627249301891, −5.79203154459545443041246789685, −4.37743185436214285489145836754, −2.40373868454214745071876353827, −0.68529383039597343362193746658, 0, 0.68529383039597343362193746658, 2.40373868454214745071876353827, 4.37743185436214285489145836754, 5.79203154459545443041246789685, 6.56641050646921648627249301891, 7.25407119151884432831654332393, 8.588698801411153970675401606414, 9.625017700817392240163855732134, 10.45290890859236867912060551232

Graph of the $Z$-function along the critical line