Properties

Label 2-325-1.1-c9-0-139
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $167.386$
Root an. cond. $12.9377$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32.7·2-s + 214.·3-s + 560.·4-s − 7.03e3·6-s − 2.06e3·7-s − 1.58e3·8-s + 2.64e4·9-s + 4.21e4·11-s + 1.20e5·12-s − 2.85e4·13-s + 6.76e4·14-s − 2.35e5·16-s + 6.08e5·17-s − 8.66e5·18-s − 9.04e5·19-s − 4.44e5·21-s − 1.38e6·22-s − 3.24e5·23-s − 3.39e5·24-s + 9.35e5·26-s + 1.45e6·27-s − 1.15e6·28-s − 5.82e6·29-s − 2.41e6·31-s + 8.50e6·32-s + 9.05e6·33-s − 1.99e7·34-s + ⋯
L(s)  = 1  − 1.44·2-s + 1.53·3-s + 1.09·4-s − 2.21·6-s − 0.325·7-s − 0.136·8-s + 1.34·9-s + 0.868·11-s + 1.67·12-s − 0.277·13-s + 0.470·14-s − 0.896·16-s + 1.76·17-s − 1.94·18-s − 1.59·19-s − 0.498·21-s − 1.25·22-s − 0.242·23-s − 0.208·24-s + 0.401·26-s + 0.527·27-s − 0.356·28-s − 1.52·29-s − 0.469·31-s + 1.43·32-s + 1.32·33-s − 2.55·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(167.386\)
Root analytic conductor: \(12.9377\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 2.85e4T \)
good2 \( 1 + 32.7T + 512T^{2} \)
3 \( 1 - 214.T + 1.96e4T^{2} \)
7 \( 1 + 2.06e3T + 4.03e7T^{2} \)
11 \( 1 - 4.21e4T + 2.35e9T^{2} \)
17 \( 1 - 6.08e5T + 1.18e11T^{2} \)
19 \( 1 + 9.04e5T + 3.22e11T^{2} \)
23 \( 1 + 3.24e5T + 1.80e12T^{2} \)
29 \( 1 + 5.82e6T + 1.45e13T^{2} \)
31 \( 1 + 2.41e6T + 2.64e13T^{2} \)
37 \( 1 - 2.56e6T + 1.29e14T^{2} \)
41 \( 1 - 1.56e7T + 3.27e14T^{2} \)
43 \( 1 + 2.80e6T + 5.02e14T^{2} \)
47 \( 1 - 5.16e7T + 1.11e15T^{2} \)
53 \( 1 + 6.64e7T + 3.29e15T^{2} \)
59 \( 1 + 1.28e8T + 8.66e15T^{2} \)
61 \( 1 + 9.99e7T + 1.16e16T^{2} \)
67 \( 1 + 1.29e8T + 2.72e16T^{2} \)
71 \( 1 - 2.17e8T + 4.58e16T^{2} \)
73 \( 1 + 3.21e8T + 5.88e16T^{2} \)
79 \( 1 + 3.28e8T + 1.19e17T^{2} \)
83 \( 1 - 1.57e8T + 1.86e17T^{2} \)
89 \( 1 - 5.73e8T + 3.50e17T^{2} \)
97 \( 1 + 7.21e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.327376337940609988802626786012, −8.858300364879757235269393013005, −7.85470194285290445745749469307, −7.40571963015357681174792504507, −6.12348405972583738089090446557, −4.24828744981561416141127404546, −3.26353712329493236099369073592, −2.11080314679830447431929471533, −1.33665246284576406711776498995, 0, 1.33665246284576406711776498995, 2.11080314679830447431929471533, 3.26353712329493236099369073592, 4.24828744981561416141127404546, 6.12348405972583738089090446557, 7.40571963015357681174792504507, 7.85470194285290445745749469307, 8.858300364879757235269393013005, 9.327376337940609988802626786012

Graph of the $Z$-function along the critical line