L(s) = 1 | + i·2-s − 2·3-s + 4-s − 2i·6-s + 3i·8-s + 9-s + 2i·11-s − 2·12-s + (2 + 3i)13-s − 16-s + i·18-s + 6i·19-s − 2·22-s − 6·23-s − 6i·24-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.15·3-s + 0.5·4-s − 0.816i·6-s + 1.06i·8-s + 0.333·9-s + 0.603i·11-s − 0.577·12-s + (0.554 + 0.832i)13-s − 0.250·16-s + 0.235i·18-s + 1.37i·19-s − 0.426·22-s − 1.25·23-s − 1.22i·24-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.554−0.832i)Λ(2−s)
Λ(s)=(=(325s/2ΓC(s+1/2)L(s)(−0.554−0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.554−0.832i
|
Analytic conductor: |
2.59513 |
Root analytic conductor: |
1.61094 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :1/2), −0.554−0.832i)
|
Particular Values
L(1) |
≈ |
0.436990+0.816524i |
L(21) |
≈ |
0.436990+0.816524i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+(−2−3i)T |
good | 2 | 1−iT−2T2 |
| 3 | 1+2T+3T2 |
| 7 | 1−7T2 |
| 11 | 1−2iT−11T2 |
| 17 | 1+17T2 |
| 19 | 1−6iT−19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1−6iT−31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1+8iT−41T2 |
| 43 | 1−6T+43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1−12T+53T2 |
| 59 | 1+2iT−59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+12iT−67T2 |
| 71 | 1+2iT−71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1−8iT−89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.99296353276332942642765155921, −11.01254498328097680870653599007, −10.37743657056284865208759440962, −9.022312494215980019091934159935, −7.83680075981377800263635606552, −6.93064912686883245100387620651, −6.02407049889489475068721471980, −5.44260138555209788819174274601, −4.01076134625495095606087851020, −1.93515407303545731145842992812,
0.75437596206238912134373358332, 2.60985512727022564354621993941, 3.96864114407920061231982211201, 5.51158480258020253772074522027, 6.19833588257915813134827660667, 7.25335192544233749893786306720, 8.531257305818010614689127322682, 9.882562489060455031237515278807, 10.65534114512796297854884259577, 11.42992459237653641999388807895