Properties

Label 2-325-13.12-c1-0-2
Degree $2$
Conductor $325$
Sign $-0.554 - 0.832i$
Analytic cond. $2.59513$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 2·3-s + 4-s − 2i·6-s + 3i·8-s + 9-s + 2i·11-s − 2·12-s + (2 + 3i)13-s − 16-s + i·18-s + 6i·19-s − 2·22-s − 6·23-s − 6i·24-s + ⋯
L(s)  = 1  + 0.707i·2-s − 1.15·3-s + 0.5·4-s − 0.816i·6-s + 1.06i·8-s + 0.333·9-s + 0.603i·11-s − 0.577·12-s + (0.554 + 0.832i)13-s − 0.250·16-s + 0.235i·18-s + 1.37i·19-s − 0.426·22-s − 1.25·23-s − 1.22i·24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.554 - 0.832i$
Analytic conductor: \(2.59513\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (51, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :1/2),\ -0.554 - 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.436990 + 0.816524i\)
\(L(\frac12)\) \(\approx\) \(0.436990 + 0.816524i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + (-2 - 3i)T \)
good2 \( 1 - iT - 2T^{2} \)
3 \( 1 + 2T + 3T^{2} \)
7 \( 1 - 7T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 6iT - 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 + 8iT - 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 - 12T + 53T^{2} \)
59 \( 1 + 2iT - 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 12iT - 67T^{2} \)
71 \( 1 + 2iT - 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 8iT - 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.99296353276332942642765155921, −11.01254498328097680870653599007, −10.37743657056284865208759440962, −9.022312494215980019091934159935, −7.83680075981377800263635606552, −6.93064912686883245100387620651, −6.02407049889489475068721471980, −5.44260138555209788819174274601, −4.01076134625495095606087851020, −1.93515407303545731145842992812, 0.75437596206238912134373358332, 2.60985512727022564354621993941, 3.96864114407920061231982211201, 5.51158480258020253772074522027, 6.19833588257915813134827660667, 7.25335192544233749893786306720, 8.531257305818010614689127322682, 9.882562489060455031237515278807, 10.65534114512796297854884259577, 11.42992459237653641999388807895

Graph of the $Z$-function along the critical line