L(s) = 1 | + (−0.134 + 0.232i)2-s + (0.301 − 0.522i)3-s + (0.963 + 1.66i)4-s + (0.0810 + 0.140i)6-s + (0.715 + 1.23i)7-s − 1.05·8-s + (1.31 + 2.28i)9-s + (0.0810 − 0.140i)11-s + 1.16·12-s + (−2.41 − 2.67i)13-s − 0.384·14-s + (−1.78 + 3.09i)16-s + (1.41 + 2.44i)17-s − 0.708·18-s + (1.96 + 3.40i)19-s + ⋯ |
L(s) = 1 | + (−0.0950 + 0.164i)2-s + (0.174 − 0.301i)3-s + (0.481 + 0.834i)4-s + (0.0330 + 0.0573i)6-s + (0.270 + 0.468i)7-s − 0.373·8-s + (0.439 + 0.761i)9-s + (0.0244 − 0.0423i)11-s + 0.335·12-s + (−0.670 − 0.742i)13-s − 0.102·14-s + (−0.446 + 0.773i)16-s + (0.342 + 0.592i)17-s − 0.167·18-s + (0.450 + 0.780i)19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.548−0.835i)Λ(2−s)
Λ(s)=(=(325s/2ΓC(s+1/2)L(s)(0.548−0.835i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.548−0.835i
|
Analytic conductor: |
2.59513 |
Root analytic conductor: |
1.61094 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(126,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :1/2), 0.548−0.835i)
|
Particular Values
L(1) |
≈ |
1.30850+0.706297i |
L(21) |
≈ |
1.30850+0.706297i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+(2.41+2.67i)T |
good | 2 | 1+(0.134−0.232i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.301+0.522i)T+(−1.5−2.59i)T2 |
| 7 | 1+(−0.715−1.23i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−0.0810+0.140i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−1.41−2.44i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.96−3.40i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−2.36+4.09i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.99+3.45i)T+(−14.5−25.1i)T2 |
| 31 | 1+0.453T+31T2 |
| 37 | 1+(2.52−4.36i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−4.29+7.43i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.33−4.03i)T+(−21.5+37.2i)T2 |
| 47 | 1+11.4T+47T2 |
| 53 | 1−7.30T+53T2 |
| 59 | 1+(4.98+8.63i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.726+1.25i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.17+5.50i)T+(−33.5−58.0i)T2 |
| 71 | 1+(7.02+12.1i)T+(−35.5+61.4i)T2 |
| 73 | 1+7.75T+73T2 |
| 79 | 1+11.2T+79T2 |
| 83 | 1−9.45T+83T2 |
| 89 | 1+(−4.33+7.50i)T+(−44.5−77.0i)T2 |
| 97 | 1+(7.40+12.8i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97326256028608982065232159854, −10.85277327539404454988032916168, −9.970862927052501390850645376729, −8.570257900094381620791207790329, −7.947163007507300041065290417534, −7.19787450661979239667536816647, −6.00036447364893754614782741171, −4.72953985306795719842202753117, −3.21827616564514736408726341938, −2.04691440609770714909605607105,
1.22249992441489060596500792987, 2.88896443726096609350629779134, 4.38253418394432217872515640317, 5.43033595061470435161501801932, 6.79219310570615819398789212897, 7.35418158910286248817041685081, 9.066455423612529080995609951809, 9.605578193179933896889976380921, 10.46607022218642748003500768551, 11.43021679818646908695468425357