L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (−0.499 + 0.866i)6-s + (0.258 + 0.965i)7-s + (−0.707 − 0.707i)8-s + (−0.5 − 0.866i)11-s + (0.707 + 0.707i)13-s + i·14-s + (−0.5 − 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.866 − 0.5i)19-s − 21-s + (−0.258 − 0.965i)22-s + (0.258 − 0.965i)23-s + (0.866 − 0.499i)24-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (−0.499 + 0.866i)6-s + (0.258 + 0.965i)7-s + (−0.707 − 0.707i)8-s + (−0.5 − 0.866i)11-s + (0.707 + 0.707i)13-s + i·14-s + (−0.5 − 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.866 − 0.5i)19-s − 21-s + (−0.258 − 0.965i)22-s + (0.258 − 0.965i)23-s + (0.866 − 0.499i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.063328779\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.063328779\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-0.707 - 0.707i)T \) |
good | 2 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 3 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97745328251240419860787322072, −11.17716742363198603676242366172, −10.23426874134615930468138319292, −9.128359529591169715367184205955, −8.536078590989055215976771831270, −6.74392235497705062067962529038, −5.78941786480063852429820169715, −4.92200513007803894603375605824, −4.20004412422117194119859308834, −2.81826998948620157783634034250,
1.77247027103046769908399431599, 3.52621030662695976480044763924, 4.49912473471969393278016859786, 5.69785316935324921116678442293, 6.73378786824217088889563621048, 7.72360873780605816117183590160, 8.590562383179906133587738142728, 10.17083871556584762314021753885, 10.93301705732237245984978849436, 12.08997808522349553622929070982