L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (−0.499 + 0.866i)6-s + (0.258 + 0.965i)7-s + (−0.707 − 0.707i)8-s + (−0.5 − 0.866i)11-s + (0.707 + 0.707i)13-s + i·14-s + (−0.5 − 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.866 − 0.5i)19-s − 21-s + (−0.258 − 0.965i)22-s + (0.258 − 0.965i)23-s + (0.866 − 0.499i)24-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (−0.499 + 0.866i)6-s + (0.258 + 0.965i)7-s + (−0.707 − 0.707i)8-s + (−0.5 − 0.866i)11-s + (0.707 + 0.707i)13-s + i·14-s + (−0.5 − 0.866i)16-s + (−0.258 − 0.965i)17-s + (−0.866 − 0.5i)19-s − 21-s + (−0.258 − 0.965i)22-s + (0.258 − 0.965i)23-s + (0.866 − 0.499i)24-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.468−0.883i)Λ(1−s)
Λ(s)=(=(325s/2ΓC(s)L(s)(0.468−0.883i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.468−0.883i
|
Analytic conductor: |
0.162196 |
Root analytic conductor: |
0.402735 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(68,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :0), 0.468−0.883i)
|
Particular Values
L(21) |
≈ |
1.063328779 |
L(21) |
≈ |
1.063328779 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+(−0.707−0.707i)T |
good | 2 | 1+(−0.965−0.258i)T+(0.866+0.5i)T2 |
| 3 | 1+(0.258−0.965i)T+(−0.866−0.5i)T2 |
| 7 | 1+(−0.258−0.965i)T+(−0.866+0.5i)T2 |
| 11 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(0.258+0.965i)T+(−0.866+0.5i)T2 |
| 19 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 23 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 29 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 31 | 1+T2 |
| 37 | 1+(0.965+0.258i)T+(0.866+0.5i)T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.965−0.258i)T+(0.866−0.5i)T2 |
| 47 | 1−iT2 |
| 53 | 1+iT2 |
| 59 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.965+0.258i)T+(0.866+0.5i)T2 |
| 71 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 73 | 1+iT2 |
| 79 | 1−T2 |
| 83 | 1+iT2 |
| 89 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 97 | 1+(−0.258−0.965i)T+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97745328251240419860787322072, −11.17716742363198603676242366172, −10.23426874134615930468138319292, −9.128359529591169715367184205955, −8.536078590989055215976771831270, −6.74392235497705062067962529038, −5.78941786480063852429820169715, −4.92200513007803894603375605824, −4.20004412422117194119859308834, −2.81826998948620157783634034250,
1.77247027103046769908399431599, 3.52621030662695976480044763924, 4.49912473471969393278016859786, 5.69785316935324921116678442293, 6.73378786824217088889563621048, 7.72360873780605816117183590160, 8.590562383179906133587738142728, 10.17083871556584762314021753885, 10.93301705732237245984978849436, 12.08997808522349553622929070982