L(s) = 1 | + 4-s − 0.517i·7-s − 1.93i·13-s + 16-s − 1.41i·19-s − 25-s − 0.517i·28-s − 1.73·31-s + 1.41i·43-s + 0.732·49-s − 1.93i·52-s + 1.41i·61-s + 64-s + 1.73·67-s − 1.93i·73-s + ⋯ |
L(s) = 1 | + 4-s − 0.517i·7-s − 1.93i·13-s + 16-s − 1.41i·19-s − 25-s − 0.517i·28-s − 1.73·31-s + 1.41i·43-s + 0.732·49-s − 1.93i·52-s + 1.41i·61-s + 64-s + 1.73·67-s − 1.93i·73-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.522+0.852i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(2782,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.522+0.852i)
|
Particular Values
L(21) |
≈ |
1.536986232 |
L(21) |
≈ |
1.536986232 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1−T2 |
| 5 | 1+T2 |
| 7 | 1+0.517iT−T2 |
| 13 | 1+1.93iT−T2 |
| 17 | 1−T2 |
| 19 | 1+1.41iT−T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1+1.73T+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1−1.41iT−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1−1.73T+T2 |
| 71 | 1+T2 |
| 73 | 1+1.93iT−T2 |
| 79 | 1−1.93iT−T2 |
| 83 | 1−T2 |
| 89 | 1+T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.581398774273914779198166497835, −7.66212898031622835293350544831, −7.42491528764338064156200076446, −6.48615943713975337362666996633, −5.71557868154761541621362927897, −5.05556988636564458177397510377, −3.82070752023145197271420709173, −3.05550009227584157588296114351, −2.22634970037347322430525235748, −0.895633476524245239422701637981,
1.80857182052585382954070619772, 2.08904261085142173650190533901, 3.48356403681026982115537413227, 4.10294859997713759860091138422, 5.38588173126502152311447486104, 5.96527130959385211439344471664, 6.75574595240329875711417235166, 7.33473840741194380848079114498, 8.148198566491282453877487706603, 8.972913020748751643222746122869