L(s) = 1 | + (0.939 + 0.342i)3-s + (0.766 − 0.642i)4-s + (−1.26 + 0.223i)5-s + (0.766 + 0.642i)9-s + (0.939 − 0.342i)12-s + (−1.26 − 0.223i)15-s + (0.173 − 0.984i)16-s + (−0.826 + 0.984i)20-s + (1.11 + 1.32i)23-s + (0.613 − 0.223i)25-s + (0.500 + 0.866i)27-s + (1.43 − 1.20i)31-s + 36-s + (0.766 + 1.32i)37-s + (−1.11 − 0.642i)45-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)3-s + (0.766 − 0.642i)4-s + (−1.26 + 0.223i)5-s + (0.766 + 0.642i)9-s + (0.939 − 0.342i)12-s + (−1.26 − 0.223i)15-s + (0.173 − 0.984i)16-s + (−0.826 + 0.984i)20-s + (1.11 + 1.32i)23-s + (0.613 − 0.223i)25-s + (0.500 + 0.866i)27-s + (1.43 − 1.20i)31-s + 36-s + (0.766 + 1.32i)37-s + (−1.11 − 0.642i)45-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.993−0.116i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.993−0.116i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.993−0.116i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(1937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.993−0.116i)
|
Particular Values
L(21) |
≈ |
1.774105816 |
L(21) |
≈ |
1.774105816 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.939−0.342i)T |
| 11 | 1 |
good | 2 | 1+(−0.766+0.642i)T2 |
| 5 | 1+(1.26−0.223i)T+(0.939−0.342i)T2 |
| 7 | 1+(0.173+0.984i)T2 |
| 13 | 1+(0.766+0.642i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(−1.11−1.32i)T+(−0.173+0.984i)T2 |
| 29 | 1+(−0.766+0.642i)T2 |
| 31 | 1+(−1.43+1.20i)T+(0.173−0.984i)T2 |
| 37 | 1+(−0.766−1.32i)T+(−0.5+0.866i)T2 |
| 41 | 1+(−0.766−0.642i)T2 |
| 43 | 1+(−0.939−0.342i)T2 |
| 47 | 1+(−1.26+1.50i)T+(−0.173−0.984i)T2 |
| 53 | 1−0.684iT−T2 |
| 59 | 1+(−0.673+0.118i)T+(0.939−0.342i)T2 |
| 61 | 1+(0.173+0.984i)T2 |
| 67 | 1+(1.76+0.642i)T+(0.766+0.642i)T2 |
| 71 | 1+(1.70−0.984i)T+(0.5−0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T2 |
| 79 | 1+(0.766−0.642i)T2 |
| 83 | 1+(−0.766+0.642i)T2 |
| 89 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 97 | 1+(−0.0603+0.342i)T+(−0.939−0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.763381001254030246534307556255, −8.001643757758017533400275554669, −7.40196084390809967422998622291, −6.90175270957282161081453641918, −5.83288670562103367301706938391, −4.85364857811297964366063310576, −4.06068017359096395147018676510, −3.20059540189718734433738952548, −2.52533307895191921441656512327, −1.25772394459459126218881973657,
1.19058572886936486759117684068, 2.61979814579062458905152562597, 3.04405335082360835359014651983, 4.08162600668159128520671153046, 4.54320704668175392370062628525, 6.08516411219401110299098690591, 6.91693023974103340121958485480, 7.42213160355322890678131664661, 8.036161870456436092535755129015, 8.603832042936494714814497926793