Properties

Label 2-3276-1.1-c1-0-10
Degree $2$
Conductor $3276$
Sign $1$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 6·11-s − 13-s + 8·17-s + 3·19-s − 9·23-s − 4·25-s + 9·29-s − 31-s − 35-s − 8·37-s − 2·41-s + 9·43-s + 3·47-s + 49-s + 5·53-s − 6·55-s − 8·59-s − 10·61-s + 65-s − 10·67-s + 12·71-s + 3·73-s + 6·77-s − 7·79-s + 15·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 1.80·11-s − 0.277·13-s + 1.94·17-s + 0.688·19-s − 1.87·23-s − 4/5·25-s + 1.67·29-s − 0.179·31-s − 0.169·35-s − 1.31·37-s − 0.312·41-s + 1.37·43-s + 0.437·47-s + 1/7·49-s + 0.686·53-s − 0.809·55-s − 1.04·59-s − 1.28·61-s + 0.124·65-s − 1.22·67-s + 1.42·71-s + 0.351·73-s + 0.683·77-s − 0.787·79-s + 1.64·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.102043545\)
\(L(\frac12)\) \(\approx\) \(2.102043545\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 + 9 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 5 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 + 7 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 5 T + p T^{2} \)
97 \( 1 - 15 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.588943294913916144303770226519, −7.81017917770960962493477778363, −7.34720187422893546120672011284, −6.29947170772173464283060055039, −5.73838646791182021882632100284, −4.69034388954423580716740084793, −3.88102117197123216567783894059, −3.28850193522786672972611735122, −1.87027540489607850169666877892, −0.927402921974082899230984722556, 0.927402921974082899230984722556, 1.87027540489607850169666877892, 3.28850193522786672972611735122, 3.88102117197123216567783894059, 4.69034388954423580716740084793, 5.73838646791182021882632100284, 6.29947170772173464283060055039, 7.34720187422893546120672011284, 7.81017917770960962493477778363, 8.588943294913916144303770226519

Graph of the $Z$-function along the critical line