L(s) = 1 | − 1.73·5-s + 7-s − 4.73·11-s + 13-s + 2.19·17-s + 7.19·19-s − 3·23-s − 2.00·25-s − 0.464·29-s + 1.19·31-s − 1.73·35-s + 4.19·37-s − 3.46·41-s − 7·43-s − 7.73·47-s + 49-s + 9.92·53-s + 8.19·55-s + 10.3·59-s − 10·61-s − 1.73·65-s − 14.3·67-s + 1.26·71-s − 9.19·73-s − 4.73·77-s − 11.3·79-s + 0.803·83-s + ⋯ |
L(s) = 1 | − 0.774·5-s + 0.377·7-s − 1.42·11-s + 0.277·13-s + 0.532·17-s + 1.65·19-s − 0.625·23-s − 0.400·25-s − 0.0861·29-s + 0.214·31-s − 0.292·35-s + 0.689·37-s − 0.541·41-s − 1.06·43-s − 1.12·47-s + 0.142·49-s + 1.36·53-s + 1.10·55-s + 1.35·59-s − 1.28·61-s − 0.214·65-s − 1.75·67-s + 0.150·71-s − 1.07·73-s − 0.539·77-s − 1.28·79-s + 0.0882·83-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 13 | 1−T |
good | 5 | 1+1.73T+5T2 |
| 11 | 1+4.73T+11T2 |
| 17 | 1−2.19T+17T2 |
| 19 | 1−7.19T+19T2 |
| 23 | 1+3T+23T2 |
| 29 | 1+0.464T+29T2 |
| 31 | 1−1.19T+31T2 |
| 37 | 1−4.19T+37T2 |
| 41 | 1+3.46T+41T2 |
| 43 | 1+7T+43T2 |
| 47 | 1+7.73T+47T2 |
| 53 | 1−9.92T+53T2 |
| 59 | 1−10.3T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+14.3T+67T2 |
| 71 | 1−1.26T+71T2 |
| 73 | 1+9.19T+73T2 |
| 79 | 1+11.3T+79T2 |
| 83 | 1−0.803T+83T2 |
| 89 | 1+11.1T+89T2 |
| 97 | 1−2.80T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.999707871184336575170437022828, −7.76255328296783370355831283802, −6.99638639380194799722392052601, −5.79626303552497990683709708201, −5.26665880898826083530694287613, −4.39919426586222085341056702165, −3.45827785826426306683713689530, −2.71043422278831614548573942804, −1.39839987249752754708912214909, 0,
1.39839987249752754708912214909, 2.71043422278831614548573942804, 3.45827785826426306683713689530, 4.39919426586222085341056702165, 5.26665880898826083530694287613, 5.79626303552497990683709708201, 6.99638639380194799722392052601, 7.76255328296783370355831283802, 7.999707871184336575170437022828