Properties

Label 2-3276-1.1-c1-0-21
Degree $2$
Conductor $3276$
Sign $-1$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·5-s + 7-s − 4.73·11-s + 13-s + 2.19·17-s + 7.19·19-s − 3·23-s − 2.00·25-s − 0.464·29-s + 1.19·31-s − 1.73·35-s + 4.19·37-s − 3.46·41-s − 7·43-s − 7.73·47-s + 49-s + 9.92·53-s + 8.19·55-s + 10.3·59-s − 10·61-s − 1.73·65-s − 14.3·67-s + 1.26·71-s − 9.19·73-s − 4.73·77-s − 11.3·79-s + 0.803·83-s + ⋯
L(s)  = 1  − 0.774·5-s + 0.377·7-s − 1.42·11-s + 0.277·13-s + 0.532·17-s + 1.65·19-s − 0.625·23-s − 0.400·25-s − 0.0861·29-s + 0.214·31-s − 0.292·35-s + 0.689·37-s − 0.541·41-s − 1.06·43-s − 1.12·47-s + 0.142·49-s + 1.36·53-s + 1.10·55-s + 1.35·59-s − 1.28·61-s − 0.214·65-s − 1.75·67-s + 0.150·71-s − 1.07·73-s − 0.539·77-s − 1.28·79-s + 0.0882·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + 1.73T + 5T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
17 \( 1 - 2.19T + 17T^{2} \)
19 \( 1 - 7.19T + 19T^{2} \)
23 \( 1 + 3T + 23T^{2} \)
29 \( 1 + 0.464T + 29T^{2} \)
31 \( 1 - 1.19T + 31T^{2} \)
37 \( 1 - 4.19T + 37T^{2} \)
41 \( 1 + 3.46T + 41T^{2} \)
43 \( 1 + 7T + 43T^{2} \)
47 \( 1 + 7.73T + 47T^{2} \)
53 \( 1 - 9.92T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 14.3T + 67T^{2} \)
71 \( 1 - 1.26T + 71T^{2} \)
73 \( 1 + 9.19T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 0.803T + 83T^{2} \)
89 \( 1 + 11.1T + 89T^{2} \)
97 \( 1 - 2.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.999707871184336575170437022828, −7.76255328296783370355831283802, −6.99638639380194799722392052601, −5.79626303552497990683709708201, −5.26665880898826083530694287613, −4.39919426586222085341056702165, −3.45827785826426306683713689530, −2.71043422278831614548573942804, −1.39839987249752754708912214909, 0, 1.39839987249752754708912214909, 2.71043422278831614548573942804, 3.45827785826426306683713689530, 4.39919426586222085341056702165, 5.26665880898826083530694287613, 5.79626303552497990683709708201, 6.99638639380194799722392052601, 7.76255328296783370355831283802, 7.999707871184336575170437022828

Graph of the $Z$-function along the critical line