L(s) = 1 | − 2.36i·5-s + (−0.866 − 0.5i)7-s + (−2.56 + 1.47i)11-s + (3.15 + 1.73i)13-s + (−1.25 + 2.17i)17-s + (3.52 + 2.03i)19-s + (1.45 + 2.52i)23-s − 0.583·25-s + (0.464 + 0.805i)29-s − 2.20i·31-s + (−1.18 + 2.04i)35-s + (−5.73 + 3.31i)37-s + (−9.87 + 5.69i)41-s + (0.859 − 1.48i)43-s − 2.64i·47-s + ⋯ |
L(s) = 1 | − 1.05i·5-s + (−0.327 − 0.188i)7-s + (−0.772 + 0.445i)11-s + (0.876 + 0.481i)13-s + (−0.303 + 0.526i)17-s + (0.808 + 0.466i)19-s + (0.304 + 0.526i)23-s − 0.116·25-s + (0.0863 + 0.149i)29-s − 0.396i·31-s + (−0.199 + 0.345i)35-s + (−0.942 + 0.544i)37-s + (−1.54 + 0.890i)41-s + (0.131 − 0.226i)43-s − 0.385i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.861 - 0.507i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.861 - 0.507i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.517602942\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.517602942\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.15 - 1.73i)T \) |
good | 5 | \( 1 + 2.36iT - 5T^{2} \) |
| 11 | \( 1 + (2.56 - 1.47i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.25 - 2.17i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.52 - 2.03i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.45 - 2.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.464 - 0.805i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.20iT - 31T^{2} \) |
| 37 | \( 1 + (5.73 - 3.31i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (9.87 - 5.69i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.859 + 1.48i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.64iT - 47T^{2} \) |
| 53 | \( 1 - 0.0492T + 53T^{2} \) |
| 59 | \( 1 + (-7.11 - 4.11i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.48 - 2.57i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.51 + 3.18i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.58 - 4.38i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.56iT - 73T^{2} \) |
| 79 | \( 1 - 13.6T + 79T^{2} \) |
| 83 | \( 1 - 14.7iT - 83T^{2} \) |
| 89 | \( 1 + (5.06 - 2.92i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-14.5 - 8.42i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.550589451823677279469312517676, −8.207712035068102579951249892122, −7.20139856642729197534069674366, −6.49808088970937589491604123306, −5.49336637745443433660015670123, −4.98412104189843539584771123524, −4.04032721904989294427985219578, −3.26677237929679349368457075426, −1.94158539861616779490488882816, −1.00841404274724712868692172284,
0.55078653879224086544511444314, 2.16908553815286596903041309933, 3.11477987560096763830107778213, 3.49359905914387186004153597705, 4.89570015167530618405313347494, 5.55939198821869460888492738943, 6.47368791414788409439881754575, 6.97812710984447240361241860628, 7.78992021168815372110939871327, 8.591469207264023184291980220844