L(s) = 1 | − 2.36i·5-s + (−0.866 − 0.5i)7-s + (−2.56 + 1.47i)11-s + (3.15 + 1.73i)13-s + (−1.25 + 2.17i)17-s + (3.52 + 2.03i)19-s + (1.45 + 2.52i)23-s − 0.583·25-s + (0.464 + 0.805i)29-s − 2.20i·31-s + (−1.18 + 2.04i)35-s + (−5.73 + 3.31i)37-s + (−9.87 + 5.69i)41-s + (0.859 − 1.48i)43-s − 2.64i·47-s + ⋯ |
L(s) = 1 | − 1.05i·5-s + (−0.327 − 0.188i)7-s + (−0.772 + 0.445i)11-s + (0.876 + 0.481i)13-s + (−0.303 + 0.526i)17-s + (0.808 + 0.466i)19-s + (0.304 + 0.526i)23-s − 0.116·25-s + (0.0863 + 0.149i)29-s − 0.396i·31-s + (−0.199 + 0.345i)35-s + (−0.942 + 0.544i)37-s + (−1.54 + 0.890i)41-s + (0.131 − 0.226i)43-s − 0.385i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.861−0.507i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.861−0.507i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.861−0.507i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1765,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.861−0.507i)
|
Particular Values
L(1) |
≈ |
1.517602942 |
L(21) |
≈ |
1.517602942 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(−3.15−1.73i)T |
good | 5 | 1+2.36iT−5T2 |
| 11 | 1+(2.56−1.47i)T+(5.5−9.52i)T2 |
| 17 | 1+(1.25−2.17i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.52−2.03i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.45−2.52i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.464−0.805i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.20iT−31T2 |
| 37 | 1+(5.73−3.31i)T+(18.5−32.0i)T2 |
| 41 | 1+(9.87−5.69i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.859+1.48i)T+(−21.5−37.2i)T2 |
| 47 | 1+2.64iT−47T2 |
| 53 | 1−0.0492T+53T2 |
| 59 | 1+(−7.11−4.11i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.48−2.57i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5.51+3.18i)T+(33.5−58.0i)T2 |
| 71 | 1+(−7.58−4.38i)T+(35.5+61.4i)T2 |
| 73 | 1−5.56iT−73T2 |
| 79 | 1−13.6T+79T2 |
| 83 | 1−14.7iT−83T2 |
| 89 | 1+(5.06−2.92i)T+(44.5−77.0i)T2 |
| 97 | 1+(−14.5−8.42i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.550589451823677279469312517676, −8.207712035068102579951249892122, −7.20139856642729197534069674366, −6.49808088970937589491604123306, −5.49336637745443433660015670123, −4.98412104189843539584771123524, −4.04032721904989294427985219578, −3.26677237929679349368457075426, −1.94158539861616779490488882816, −1.00841404274724712868692172284,
0.55078653879224086544511444314, 2.16908553815286596903041309933, 3.11477987560096763830107778213, 3.49359905914387186004153597705, 4.89570015167530618405313347494, 5.55939198821869460888492738943, 6.47368791414788409439881754575, 6.97812710984447240361241860628, 7.78992021168815372110939871327, 8.591469207264023184291980220844