L(s) = 1 | + 3.22i·5-s + (0.866 + 0.5i)7-s + (−1.17 + 0.678i)11-s + (1.95 − 3.03i)13-s + (−1.44 + 2.50i)17-s + (5.05 + 2.92i)19-s + (0.482 + 0.835i)23-s − 5.39·25-s + (3.61 + 6.26i)29-s − 2.60i·31-s + (−1.61 + 2.79i)35-s + (−4.35 + 2.51i)37-s + (8.03 − 4.63i)41-s + (0.226 − 0.392i)43-s + 5.42i·47-s + ⋯ |
L(s) = 1 | + 1.44i·5-s + (0.327 + 0.188i)7-s + (−0.354 + 0.204i)11-s + (0.541 − 0.840i)13-s + (−0.351 + 0.608i)17-s + (1.16 + 0.669i)19-s + (0.100 + 0.174i)23-s − 1.07·25-s + (0.672 + 1.16i)29-s − 0.468i·31-s + (−0.272 + 0.471i)35-s + (−0.715 + 0.413i)37-s + (1.25 − 0.724i)41-s + (0.0345 − 0.0597i)43-s + 0.791i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.736743986\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.736743986\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-1.95 + 3.03i)T \) |
good | 5 | \( 1 - 3.22iT - 5T^{2} \) |
| 11 | \( 1 + (1.17 - 0.678i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.44 - 2.50i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.05 - 2.92i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.482 - 0.835i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.61 - 6.26i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.60iT - 31T^{2} \) |
| 37 | \( 1 + (4.35 - 2.51i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.03 + 4.63i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.226 + 0.392i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 5.42iT - 47T^{2} \) |
| 53 | \( 1 + 1.37T + 53T^{2} \) |
| 59 | \( 1 + (2.69 + 1.55i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.31 - 4.01i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.232 + 0.134i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.6 - 6.13i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 9.24iT - 73T^{2} \) |
| 79 | \( 1 + 8.13T + 79T^{2} \) |
| 83 | \( 1 - 2.59iT - 83T^{2} \) |
| 89 | \( 1 + (5.84 - 3.37i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (11.5 + 6.67i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.786900208582508526803347153905, −8.007283441063841712041877182777, −7.40456663185525336326357133723, −6.69996396994302279398049709297, −5.87245814861654236388179837074, −5.26970089693466565659212351543, −4.05003670646927070630669932925, −3.21422364286908981294099760357, −2.58458015539271588440802076633, −1.35191363878764940238097246791,
0.57025402115164352141845504660, 1.48018979723630319712962674001, 2.65840288494546494026273136037, 3.86678737375396869718616462893, 4.70641949597410112116939737256, 5.11671415657919898394414771198, 6.05867835262213709934843414493, 6.96246519023806239196627076703, 7.81854606601088230421911667684, 8.438632177714979027689648394236