Properties

Label 2-3276-13.10-c1-0-12
Degree 22
Conductor 32763276
Sign 0.4460.894i-0.446 - 0.894i
Analytic cond. 26.158926.1589
Root an. cond. 5.114585.11458
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.22i·5-s + (0.866 + 0.5i)7-s + (−1.17 + 0.678i)11-s + (1.95 − 3.03i)13-s + (−1.44 + 2.50i)17-s + (5.05 + 2.92i)19-s + (0.482 + 0.835i)23-s − 5.39·25-s + (3.61 + 6.26i)29-s − 2.60i·31-s + (−1.61 + 2.79i)35-s + (−4.35 + 2.51i)37-s + (8.03 − 4.63i)41-s + (0.226 − 0.392i)43-s + 5.42i·47-s + ⋯
L(s)  = 1  + 1.44i·5-s + (0.327 + 0.188i)7-s + (−0.354 + 0.204i)11-s + (0.541 − 0.840i)13-s + (−0.351 + 0.608i)17-s + (1.16 + 0.669i)19-s + (0.100 + 0.174i)23-s − 1.07·25-s + (0.672 + 1.16i)29-s − 0.468i·31-s + (−0.272 + 0.471i)35-s + (−0.715 + 0.413i)37-s + (1.25 − 0.724i)41-s + (0.0345 − 0.0597i)43-s + 0.791i·47-s + ⋯

Functional equation

Λ(s)=(3276s/2ΓC(s)L(s)=((0.4460.894i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(3276s/2ΓC(s+1/2)L(s)=((0.4460.894i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 32763276    =    22327132^{2} \cdot 3^{2} \cdot 7 \cdot 13
Sign: 0.4460.894i-0.446 - 0.894i
Analytic conductor: 26.158926.1589
Root analytic conductor: 5.114585.11458
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ3276(1765,)\chi_{3276} (1765, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3276, ( :1/2), 0.4460.894i)(2,\ 3276,\ (\ :1/2),\ -0.446 - 0.894i)

Particular Values

L(1)L(1) \approx 1.7367439861.736743986
L(12)L(\frac12) \approx 1.7367439861.736743986
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
13 1+(1.95+3.03i)T 1 + (-1.95 + 3.03i)T
good5 13.22iT5T2 1 - 3.22iT - 5T^{2}
11 1+(1.170.678i)T+(5.59.52i)T2 1 + (1.17 - 0.678i)T + (5.5 - 9.52i)T^{2}
17 1+(1.442.50i)T+(8.514.7i)T2 1 + (1.44 - 2.50i)T + (-8.5 - 14.7i)T^{2}
19 1+(5.052.92i)T+(9.5+16.4i)T2 1 + (-5.05 - 2.92i)T + (9.5 + 16.4i)T^{2}
23 1+(0.4820.835i)T+(11.5+19.9i)T2 1 + (-0.482 - 0.835i)T + (-11.5 + 19.9i)T^{2}
29 1+(3.616.26i)T+(14.5+25.1i)T2 1 + (-3.61 - 6.26i)T + (-14.5 + 25.1i)T^{2}
31 1+2.60iT31T2 1 + 2.60iT - 31T^{2}
37 1+(4.352.51i)T+(18.532.0i)T2 1 + (4.35 - 2.51i)T + (18.5 - 32.0i)T^{2}
41 1+(8.03+4.63i)T+(20.535.5i)T2 1 + (-8.03 + 4.63i)T + (20.5 - 35.5i)T^{2}
43 1+(0.226+0.392i)T+(21.537.2i)T2 1 + (-0.226 + 0.392i)T + (-21.5 - 37.2i)T^{2}
47 15.42iT47T2 1 - 5.42iT - 47T^{2}
53 1+1.37T+53T2 1 + 1.37T + 53T^{2}
59 1+(2.69+1.55i)T+(29.5+51.0i)T2 1 + (2.69 + 1.55i)T + (29.5 + 51.0i)T^{2}
61 1+(2.314.01i)T+(30.552.8i)T2 1 + (2.31 - 4.01i)T + (-30.5 - 52.8i)T^{2}
67 1+(0.232+0.134i)T+(33.558.0i)T2 1 + (-0.232 + 0.134i)T + (33.5 - 58.0i)T^{2}
71 1+(10.66.13i)T+(35.5+61.4i)T2 1 + (-10.6 - 6.13i)T + (35.5 + 61.4i)T^{2}
73 19.24iT73T2 1 - 9.24iT - 73T^{2}
79 1+8.13T+79T2 1 + 8.13T + 79T^{2}
83 12.59iT83T2 1 - 2.59iT - 83T^{2}
89 1+(5.843.37i)T+(44.577.0i)T2 1 + (5.84 - 3.37i)T + (44.5 - 77.0i)T^{2}
97 1+(11.5+6.67i)T+(48.5+84.0i)T2 1 + (11.5 + 6.67i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.786900208582508526803347153905, −8.007283441063841712041877182777, −7.40456663185525336326357133723, −6.69996396994302279398049709297, −5.87245814861654236388179837074, −5.26970089693466565659212351543, −4.05003670646927070630669932925, −3.21422364286908981294099760357, −2.58458015539271588440802076633, −1.35191363878764940238097246791, 0.57025402115164352141845504660, 1.48018979723630319712962674001, 2.65840288494546494026273136037, 3.86678737375396869718616462893, 4.70641949597410112116939737256, 5.11671415657919898394414771198, 6.05867835262213709934843414493, 6.96246519023806239196627076703, 7.81854606601088230421911667684, 8.438632177714979027689648394236

Graph of the ZZ-function along the critical line