L(s) = 1 | + 1.40i·5-s + (−0.866 − 0.5i)7-s + (1.03 − 0.596i)11-s + (−1.17 − 3.40i)13-s + (−2.57 + 4.45i)17-s + (−1.13 − 0.656i)19-s + (−0.660 − 1.14i)23-s + 3.02·25-s + (2.70 + 4.68i)29-s − 7.30i·31-s + (0.702 − 1.21i)35-s + (7.44 − 4.29i)37-s + (2.44 − 1.41i)41-s + (−0.343 + 0.595i)43-s + 1.80i·47-s + ⋯ |
L(s) = 1 | + 0.628i·5-s + (−0.327 − 0.188i)7-s + (0.311 − 0.179i)11-s + (−0.326 − 0.945i)13-s + (−0.624 + 1.08i)17-s + (−0.260 − 0.150i)19-s + (−0.137 − 0.238i)23-s + 0.604·25-s + (0.501 + 0.869i)29-s − 1.31i·31-s + (0.118 − 0.205i)35-s + (1.22 − 0.706i)37-s + (0.381 − 0.220i)41-s + (−0.0524 + 0.0908i)43-s + 0.263i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.979+0.202i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.979+0.202i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.979+0.202i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1765,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.979+0.202i)
|
Particular Values
L(1) |
≈ |
1.632440168 |
L(21) |
≈ |
1.632440168 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(1.17+3.40i)T |
good | 5 | 1−1.40iT−5T2 |
| 11 | 1+(−1.03+0.596i)T+(5.5−9.52i)T2 |
| 17 | 1+(2.57−4.45i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.13+0.656i)T+(9.5+16.4i)T2 |
| 23 | 1+(0.660+1.14i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.70−4.68i)T+(−14.5+25.1i)T2 |
| 31 | 1+7.30iT−31T2 |
| 37 | 1+(−7.44+4.29i)T+(18.5−32.0i)T2 |
| 41 | 1+(−2.44+1.41i)T+(20.5−35.5i)T2 |
| 43 | 1+(0.343−0.595i)T+(−21.5−37.2i)T2 |
| 47 | 1−1.80iT−47T2 |
| 53 | 1−6.42T+53T2 |
| 59 | 1+(−2.25−1.30i)T+(29.5+51.0i)T2 |
| 61 | 1+(−0.0222+0.0384i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.14−1.23i)T+(33.5−58.0i)T2 |
| 71 | 1+(−2.94−1.70i)T+(35.5+61.4i)T2 |
| 73 | 1+13.2iT−73T2 |
| 79 | 1−7.59T+79T2 |
| 83 | 1+8.92iT−83T2 |
| 89 | 1+(5.99−3.45i)T+(44.5−77.0i)T2 |
| 97 | 1+(−11.4−6.60i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.606180037309770061053118463192, −7.82954448761381091095592795937, −7.11772076767434744026075723163, −6.32295078574522131764073273114, −5.81438308335104434561401050242, −4.68082873666588341491437816972, −3.86857858350648198935449323644, −3.00446825411053676108330810167, −2.16299769136513202674803282273, −0.67558772767604407609006503910,
0.856568848229762355328456114754, 2.08815127034196016917504354922, 2.99262030196989116275496682641, 4.20947854682877491449184565037, 4.71346424313911051548876595710, 5.57189613350865831965933958778, 6.61142310098924026986528921540, 6.97575161295096860848413208151, 8.041631419669559932027910148689, 8.760016907597191260126623343442