L(s) = 1 | + 1.40i·5-s + (−0.866 − 0.5i)7-s + (1.03 − 0.596i)11-s + (−1.17 − 3.40i)13-s + (−2.57 + 4.45i)17-s + (−1.13 − 0.656i)19-s + (−0.660 − 1.14i)23-s + 3.02·25-s + (2.70 + 4.68i)29-s − 7.30i·31-s + (0.702 − 1.21i)35-s + (7.44 − 4.29i)37-s + (2.44 − 1.41i)41-s + (−0.343 + 0.595i)43-s + 1.80i·47-s + ⋯ |
L(s) = 1 | + 0.628i·5-s + (−0.327 − 0.188i)7-s + (0.311 − 0.179i)11-s + (−0.326 − 0.945i)13-s + (−0.624 + 1.08i)17-s + (−0.260 − 0.150i)19-s + (−0.137 − 0.238i)23-s + 0.604·25-s + (0.501 + 0.869i)29-s − 1.31i·31-s + (0.118 − 0.205i)35-s + (1.22 − 0.706i)37-s + (0.381 − 0.220i)41-s + (−0.0524 + 0.0908i)43-s + 0.263i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.632440168\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.632440168\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (1.17 + 3.40i)T \) |
good | 5 | \( 1 - 1.40iT - 5T^{2} \) |
| 11 | \( 1 + (-1.03 + 0.596i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.57 - 4.45i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.13 + 0.656i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.660 + 1.14i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.70 - 4.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.30iT - 31T^{2} \) |
| 37 | \( 1 + (-7.44 + 4.29i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.44 + 1.41i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.343 - 0.595i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.80iT - 47T^{2} \) |
| 53 | \( 1 - 6.42T + 53T^{2} \) |
| 59 | \( 1 + (-2.25 - 1.30i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.0222 + 0.0384i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.14 - 1.23i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.94 - 1.70i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 13.2iT - 73T^{2} \) |
| 79 | \( 1 - 7.59T + 79T^{2} \) |
| 83 | \( 1 + 8.92iT - 83T^{2} \) |
| 89 | \( 1 + (5.99 - 3.45i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.4 - 6.60i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.606180037309770061053118463192, −7.82954448761381091095592795937, −7.11772076767434744026075723163, −6.32295078574522131764073273114, −5.81438308335104434561401050242, −4.68082873666588341491437816972, −3.86857858350648198935449323644, −3.00446825411053676108330810167, −2.16299769136513202674803282273, −0.67558772767604407609006503910,
0.856568848229762355328456114754, 2.08815127034196016917504354922, 2.99262030196989116275496682641, 4.20947854682877491449184565037, 4.71346424313911051548876595710, 5.57189613350865831965933958778, 6.61142310098924026986528921540, 6.97575161295096860848413208151, 8.041631419669559932027910148689, 8.760016907597191260126623343442