L(s) = 1 | + 1.91i·5-s + (0.866 + 0.5i)7-s + (−2.71 + 1.56i)11-s + (2.44 − 2.64i)13-s + (−1.02 + 1.78i)17-s + (−4.35 − 2.51i)19-s + (−3.46 − 6.00i)23-s + 1.32·25-s + (−5.03 − 8.71i)29-s − 10.5i·31-s + (−0.959 + 1.66i)35-s + (−0.508 + 0.293i)37-s + (−1.22 + 0.709i)41-s + (−1.39 + 2.41i)43-s + 3.70i·47-s + ⋯ |
L(s) = 1 | + 0.857i·5-s + (0.327 + 0.188i)7-s + (−0.819 + 0.472i)11-s + (0.679 − 0.734i)13-s + (−0.249 + 0.431i)17-s + (−0.998 − 0.576i)19-s + (−0.723 − 1.25i)23-s + 0.264·25-s + (−0.934 − 1.61i)29-s − 1.89i·31-s + (−0.162 + 0.280i)35-s + (−0.0835 + 0.0482i)37-s + (−0.191 + 0.110i)41-s + (−0.212 + 0.367i)43-s + 0.540i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.283+0.958i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.283+0.958i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.283+0.958i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1765,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.283+0.958i)
|
Particular Values
L(1) |
≈ |
1.148745395 |
L(21) |
≈ |
1.148745395 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1+(−2.44+2.64i)T |
good | 5 | 1−1.91iT−5T2 |
| 11 | 1+(2.71−1.56i)T+(5.5−9.52i)T2 |
| 17 | 1+(1.02−1.78i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.35+2.51i)T+(9.5+16.4i)T2 |
| 23 | 1+(3.46+6.00i)T+(−11.5+19.9i)T2 |
| 29 | 1+(5.03+8.71i)T+(−14.5+25.1i)T2 |
| 31 | 1+10.5iT−31T2 |
| 37 | 1+(0.508−0.293i)T+(18.5−32.0i)T2 |
| 41 | 1+(1.22−0.709i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.39−2.41i)T+(−21.5−37.2i)T2 |
| 47 | 1−3.70iT−47T2 |
| 53 | 1−12.4T+53T2 |
| 59 | 1+(−3.93−2.27i)T+(29.5+51.0i)T2 |
| 61 | 1+(−1.20+2.08i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−12.7+7.33i)T+(33.5−58.0i)T2 |
| 71 | 1+(6.32+3.65i)T+(35.5+61.4i)T2 |
| 73 | 1−2.18iT−73T2 |
| 79 | 1−0.00212T+79T2 |
| 83 | 1−9.23iT−83T2 |
| 89 | 1+(−12.3+7.12i)T+(44.5−77.0i)T2 |
| 97 | 1+(1.08+0.625i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.183274697643044424567408404588, −7.979067014090404948898955743454, −6.94994163148071810106375312140, −6.22216591172019134133341625190, −5.62153396847248070368631833735, −4.50866926966198205622740229679, −3.85181506598952364713662971237, −2.58556396090839606693180466999, −2.18122558740481675773803010492, −0.36077562533224782490899938757,
1.18461830890709477909926426467, 2.05052667464847936685450321158, 3.41026565831203392200005306598, 4.10284016618305827074012969772, 5.18511717955320488445138010130, 5.46386749899628048719733068646, 6.64039313024853596226808726781, 7.29168061336178818757894075684, 8.311843036763357139552918770456, 8.668024742083726655446218611703