L(s) = 1 | + 1.91i·5-s + (0.866 + 0.5i)7-s + (−2.71 + 1.56i)11-s + (2.44 − 2.64i)13-s + (−1.02 + 1.78i)17-s + (−4.35 − 2.51i)19-s + (−3.46 − 6.00i)23-s + 1.32·25-s + (−5.03 − 8.71i)29-s − 10.5i·31-s + (−0.959 + 1.66i)35-s + (−0.508 + 0.293i)37-s + (−1.22 + 0.709i)41-s + (−1.39 + 2.41i)43-s + 3.70i·47-s + ⋯ |
L(s) = 1 | + 0.857i·5-s + (0.327 + 0.188i)7-s + (−0.819 + 0.472i)11-s + (0.679 − 0.734i)13-s + (−0.249 + 0.431i)17-s + (−0.998 − 0.576i)19-s + (−0.723 − 1.25i)23-s + 0.264·25-s + (−0.934 − 1.61i)29-s − 1.89i·31-s + (−0.162 + 0.280i)35-s + (−0.0835 + 0.0482i)37-s + (−0.191 + 0.110i)41-s + (−0.212 + 0.367i)43-s + 0.540i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.283 + 0.958i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.283 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.148745395\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.148745395\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-2.44 + 2.64i)T \) |
good | 5 | \( 1 - 1.91iT - 5T^{2} \) |
| 11 | \( 1 + (2.71 - 1.56i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.02 - 1.78i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.35 + 2.51i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.46 + 6.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.03 + 8.71i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 10.5iT - 31T^{2} \) |
| 37 | \( 1 + (0.508 - 0.293i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.22 - 0.709i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.39 - 2.41i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.70iT - 47T^{2} \) |
| 53 | \( 1 - 12.4T + 53T^{2} \) |
| 59 | \( 1 + (-3.93 - 2.27i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.20 + 2.08i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-12.7 + 7.33i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.32 + 3.65i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 2.18iT - 73T^{2} \) |
| 79 | \( 1 - 0.00212T + 79T^{2} \) |
| 83 | \( 1 - 9.23iT - 83T^{2} \) |
| 89 | \( 1 + (-12.3 + 7.12i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.08 + 0.625i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.183274697643044424567408404588, −7.979067014090404948898955743454, −6.94994163148071810106375312140, −6.22216591172019134133341625190, −5.62153396847248070368631833735, −4.50866926966198205622740229679, −3.85181506598952364713662971237, −2.58556396090839606693180466999, −2.18122558740481675773803010492, −0.36077562533224782490899938757,
1.18461830890709477909926426467, 2.05052667464847936685450321158, 3.41026565831203392200005306598, 4.10284016618305827074012969772, 5.18511717955320488445138010130, 5.46386749899628048719733068646, 6.64039313024853596226808726781, 7.29168061336178818757894075684, 8.311843036763357139552918770456, 8.668024742083726655446218611703