L(s) = 1 | + (−0.669 + 1.15i)2-s + (0.809 + 1.40i)3-s + (−0.395 − 0.684i)4-s − 2.16·6-s + (0.669 − 0.743i)7-s − 0.279·8-s + (−0.809 + 1.40i)9-s + (0.639 − 1.10i)12-s + (0.413 + 1.27i)14-s + (0.582 − 1.00i)16-s + (−0.913 − 1.58i)17-s + (−1.08 − 1.87i)18-s + (1.58 + 0.336i)21-s + (−0.226 − 0.392i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
L(s) = 1 | + (−0.669 + 1.15i)2-s + (0.809 + 1.40i)3-s + (−0.395 − 0.684i)4-s − 2.16·6-s + (0.669 − 0.743i)7-s − 0.279·8-s + (−0.809 + 1.40i)9-s + (0.639 − 1.10i)12-s + (0.413 + 1.27i)14-s + (0.582 − 1.00i)16-s + (−0.913 − 1.58i)17-s + (−1.08 − 1.87i)18-s + (1.58 + 0.336i)21-s + (−0.226 − 0.392i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
Λ(s)=(=(329s/2ΓC(s)L(s)(−0.784−0.620i)Λ(1−s)
Λ(s)=(=(329s/2ΓC(s)L(s)(−0.784−0.620i)Λ(1−s)
Degree: |
2 |
Conductor: |
329
= 7⋅47
|
Sign: |
−0.784−0.620i
|
Analytic conductor: |
0.164192 |
Root analytic conductor: |
0.405206 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ329(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 329, ( :0), −0.784−0.620i)
|
Particular Values
L(21) |
≈ |
0.7333855700 |
L(21) |
≈ |
0.7333855700 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−0.669+0.743i)T |
| 47 | 1+(0.5−0.866i)T |
good | 2 | 1+(0.669−1.15i)T+(−0.5−0.866i)T2 |
| 3 | 1+(−0.809−1.40i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.913+1.58i)T+(−0.5+0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.913−1.58i)T+(−0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 53 | 1+(−0.978−1.69i)T+(−0.5+0.866i)T2 |
| 59 | 1+(0.669+1.15i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.669−1.15i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−1.82T+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−0.809+1.40i)T+(−0.5−0.866i)T2 |
| 83 | 1+T+T2 |
| 89 | 1+(0.309−0.535i)T+(−0.5−0.866i)T2 |
| 97 | 1+1.95T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91438539982107099670360261650, −10.87196333030955357408634184581, −9.948483395748035623363736136830, −9.236255472473650207245477498343, −8.449914372338562942614672988005, −7.67625808944133744472150545490, −6.65558505077137405488207586256, −5.13171704548076107549426400459, −4.31284991009843045661816457700, −2.90183104402826162231304474382,
1.68645756168233095062941011887, 2.26449363185006760463762289466, 3.64692453493006510428542000412, 5.71329851781330750415844131549, 6.85407118795595001850969981394, 8.125258701577221978287428657344, 8.588071381174095460277208669792, 9.409601448047303321602950053638, 10.72225150387065585578446362631, 11.47569131598313690268391917731