L(s) = 1 | + (−0.366 + 0.366i)5-s + (0.5 + 0.866i)9-s + (0.5 − 0.866i)13-s + (0.866 − 0.5i)17-s + 0.732i·25-s + (0.5 − 0.866i)29-s + (−1.86 + 0.5i)37-s + (0.133 + 0.5i)41-s + (−0.5 − 0.133i)45-s + (0.866 + 0.5i)49-s + 1.73·53-s + (0.866 + 1.5i)61-s + (0.133 + 0.5i)65-s + (0.366 + 0.366i)73-s + (−0.499 + 0.866i)81-s + ⋯ |
L(s) = 1 | + (−0.366 + 0.366i)5-s + (0.5 + 0.866i)9-s + (0.5 − 0.866i)13-s + (0.866 − 0.5i)17-s + 0.732i·25-s + (0.5 − 0.866i)29-s + (−1.86 + 0.5i)37-s + (0.133 + 0.5i)41-s + (−0.5 − 0.133i)45-s + (0.866 + 0.5i)49-s + 1.73·53-s + (0.866 + 1.5i)61-s + (0.133 + 0.5i)65-s + (0.366 + 0.366i)73-s + (−0.499 + 0.866i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 - 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 - 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.281541259\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.281541259\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-0.133 - 0.5i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - 1.73T + T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.720337304884890578986721770788, −8.029462050504810331328612279167, −7.42963887633839981628674184319, −6.81268683773220191033946512111, −5.69182023675411015620143268966, −5.17613042039331570527716168283, −4.14765001669613203585249659150, −3.33281082882583115050541068871, −2.45292755576224510062924665727, −1.17048844035441946714802455681,
0.968232067690650475347485752375, 2.05945081101659280292233756882, 3.51732252893106511657578401893, 3.90517835668513786685525692131, 4.88481061043337270816148203276, 5.74359681776275877652771853570, 6.65194512455347456295344167490, 7.12227074260447467330370488195, 8.138422987682373358216401512288, 8.768061519556713680647167489605