L(s) = 1 | + i·3-s + i·5-s + 3·7-s + 2·9-s − 2i·11-s − i·13-s − 15-s − 3·17-s + 2i·19-s + 3i·21-s + 4·23-s + 4·25-s + 5i·27-s − 2i·29-s − 4·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 0.447i·5-s + 1.13·7-s + 0.666·9-s − 0.603i·11-s − 0.277i·13-s − 0.258·15-s − 0.727·17-s + 0.458i·19-s + 0.654i·21-s + 0.834·23-s + 0.800·25-s + 0.962i·27-s − 0.371i·29-s − 0.718·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.400789823\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.400789823\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - iT - 3T^{2} \) |
| 5 | \( 1 - iT - 5T^{2} \) |
| 7 | \( 1 - 3T + 7T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + 2iT - 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 - 5iT - 37T^{2} \) |
| 41 | \( 1 - 12T + 41T^{2} \) |
| 43 | \( 1 + 7iT - 43T^{2} \) |
| 47 | \( 1 - 9T + 47T^{2} \) |
| 53 | \( 1 - 4iT - 53T^{2} \) |
| 59 | \( 1 + 6iT - 59T^{2} \) |
| 61 | \( 1 - 4iT - 61T^{2} \) |
| 67 | \( 1 + 10iT - 67T^{2} \) |
| 71 | \( 1 + 15T + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 + 2T + 89T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.880157672028371211683869038403, −7.905114463359413762411237583990, −7.35400998102095319157005823962, −6.49476624921280522772804785712, −5.56761019982169990166111603987, −4.80604899610561460037535656113, −4.15457340430832945190843238100, −3.24796225218268772921656850650, −2.19254625144669468143236401663, −1.04747734778876854886060885548,
0.944510207715478198284809024647, 1.76602891595524199945264321345, 2.63266241948440037720055765942, 4.17543957128242856597877921997, 4.60549786053395597259857643766, 5.38607867962064949987032330061, 6.42416732087092013598387706853, 7.32767881993696853970978007488, 7.50211611712680101994387131035, 8.628387802360297444039085334453