Properties

Label 2-3330-1.1-c1-0-31
Degree $2$
Conductor $3330$
Sign $1$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 8-s + 10-s + 4·11-s + 2·13-s + 16-s + 2·17-s − 4·19-s + 20-s + 4·22-s + 25-s + 2·26-s + 6·29-s − 4·31-s + 32-s + 2·34-s − 37-s − 4·38-s + 40-s + 6·41-s + 4·43-s + 4·44-s + 8·47-s − 7·49-s + 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.353·8-s + 0.316·10-s + 1.20·11-s + 0.554·13-s + 1/4·16-s + 0.485·17-s − 0.917·19-s + 0.223·20-s + 0.852·22-s + 1/5·25-s + 0.392·26-s + 1.11·29-s − 0.718·31-s + 0.176·32-s + 0.342·34-s − 0.164·37-s − 0.648·38-s + 0.158·40-s + 0.937·41-s + 0.609·43-s + 0.603·44-s + 1.16·47-s − 49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.701468404\)
\(L(\frac12)\) \(\approx\) \(3.701468404\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.682599430842842951185945495515, −7.81059324472633605684417031104, −6.87493338522800143592874040603, −6.27790394394954895549345060581, −5.72116256637183355409115684013, −4.69247680915447547060653501609, −4.00369031444618358374700555311, −3.17732882969520207000389302979, −2.10151323526117516194563984785, −1.12328850500342707125804122399, 1.12328850500342707125804122399, 2.10151323526117516194563984785, 3.17732882969520207000389302979, 4.00369031444618358374700555311, 4.69247680915447547060653501609, 5.72116256637183355409115684013, 6.27790394394954895549345060581, 6.87493338522800143592874040603, 7.81059324472633605684417031104, 8.682599430842842951185945495515

Graph of the $Z$-function along the critical line