L(s) = 1 | − 2-s + 4-s − 5-s − 8-s + 10-s − 4·11-s − 2·13-s + 16-s − 2·17-s + 4·19-s − 20-s + 4·22-s + 8·23-s + 25-s + 2·26-s + 2·29-s + 8·31-s − 32-s + 2·34-s + 37-s − 4·38-s + 40-s − 10·41-s + 12·43-s − 4·44-s − 8·46-s − 7·49-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 1.20·11-s − 0.554·13-s + 1/4·16-s − 0.485·17-s + 0.917·19-s − 0.223·20-s + 0.852·22-s + 1.66·23-s + 1/5·25-s + 0.392·26-s + 0.371·29-s + 1.43·31-s − 0.176·32-s + 0.342·34-s + 0.164·37-s − 0.648·38-s + 0.158·40-s − 1.56·41-s + 1.82·43-s − 0.603·44-s − 1.17·46-s − 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 37 | \( 1 - T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216041505074718514868241405854, −7.57828200758147776444056212821, −7.04105417113067698913576162007, −6.13659158627572689966208649800, −5.11261834281728012264141212720, −4.55919000316530172398941387546, −3.11331211630610403005264981347, −2.67055050267717022079045273548, −1.25624636361396029182036603824, 0,
1.25624636361396029182036603824, 2.67055050267717022079045273548, 3.11331211630610403005264981347, 4.55919000316530172398941387546, 5.11261834281728012264141212720, 6.13659158627572689966208649800, 7.04105417113067698913576162007, 7.57828200758147776444056212821, 8.216041505074718514868241405854