Properties

Label 2-3330-1.1-c1-0-40
Degree $2$
Conductor $3330$
Sign $-1$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 4·11-s − 2·13-s + 16-s − 2·17-s + 4·19-s − 20-s + 4·22-s + 8·23-s + 25-s + 2·26-s + 2·29-s + 8·31-s − 32-s + 2·34-s + 37-s − 4·38-s + 40-s − 10·41-s + 12·43-s − 4·44-s − 8·46-s − 7·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 1.20·11-s − 0.554·13-s + 1/4·16-s − 0.485·17-s + 0.917·19-s − 0.223·20-s + 0.852·22-s + 1.66·23-s + 1/5·25-s + 0.392·26-s + 0.371·29-s + 1.43·31-s − 0.176·32-s + 0.342·34-s + 0.164·37-s − 0.648·38-s + 0.158·40-s − 1.56·41-s + 1.82·43-s − 0.603·44-s − 1.17·46-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.216041505074718514868241405854, −7.57828200758147776444056212821, −7.04105417113067698913576162007, −6.13659158627572689966208649800, −5.11261834281728012264141212720, −4.55919000316530172398941387546, −3.11331211630610403005264981347, −2.67055050267717022079045273548, −1.25624636361396029182036603824, 0, 1.25624636361396029182036603824, 2.67055050267717022079045273548, 3.11331211630610403005264981347, 4.55919000316530172398941387546, 5.11261834281728012264141212720, 6.13659158627572689966208649800, 7.04105417113067698913576162007, 7.57828200758147776444056212821, 8.216041505074718514868241405854

Graph of the $Z$-function along the critical line