Properties

Label 2-3330-1.1-c1-0-48
Degree $2$
Conductor $3330$
Sign $-1$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s − 2·11-s − 2·13-s + 16-s + 2·17-s − 8·19-s + 20-s + 2·22-s + 4·23-s + 25-s + 2·26-s + 10·29-s + 2·31-s − 32-s − 2·34-s + 37-s + 8·38-s − 40-s − 8·41-s − 6·43-s − 2·44-s − 4·46-s − 6·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s − 0.603·11-s − 0.554·13-s + 1/4·16-s + 0.485·17-s − 1.83·19-s + 0.223·20-s + 0.426·22-s + 0.834·23-s + 1/5·25-s + 0.392·26-s + 1.85·29-s + 0.359·31-s − 0.176·32-s − 0.342·34-s + 0.164·37-s + 1.29·38-s − 0.158·40-s − 1.24·41-s − 0.914·43-s − 0.301·44-s − 0.589·46-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 16 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.408143730107138610044692248639, −7.64963676724052456719193587557, −6.68601144599048155922943535024, −6.30349379090631139189278339381, −5.17339540004283311638824595430, −4.55720531529590455934609038280, −3.18386506034984626649901490212, −2.44876920041597401980141388769, −1.42856017407325710747629050042, 0, 1.42856017407325710747629050042, 2.44876920041597401980141388769, 3.18386506034984626649901490212, 4.55720531529590455934609038280, 5.17339540004283311638824595430, 6.30349379090631139189278339381, 6.68601144599048155922943535024, 7.64963676724052456719193587557, 8.408143730107138610044692248639

Graph of the $Z$-function along the critical line