L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.0990 + 0.433i)3-s + (0.623 + 0.781i)4-s + (0.0990 − 0.433i)6-s + (−0.222 − 0.974i)7-s + (−0.222 − 0.974i)8-s + (0.722 − 0.347i)9-s + (1.62 + 0.781i)11-s + (−0.277 + 0.347i)12-s + (1.62 + 0.781i)13-s + (−0.222 + 0.974i)14-s + (−0.222 + 0.974i)16-s + (0.623 − 0.781i)17-s − 0.801·18-s + (0.400 − 0.193i)21-s + (−1.12 − 1.40i)22-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.0990 + 0.433i)3-s + (0.623 + 0.781i)4-s + (0.0990 − 0.433i)6-s + (−0.222 − 0.974i)7-s + (−0.222 − 0.974i)8-s + (0.722 − 0.347i)9-s + (1.62 + 0.781i)11-s + (−0.277 + 0.347i)12-s + (1.62 + 0.781i)13-s + (−0.222 + 0.974i)14-s + (−0.222 + 0.974i)16-s + (0.623 − 0.781i)17-s − 0.801·18-s + (0.400 − 0.193i)21-s + (−1.12 − 1.40i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.926+0.375i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.926+0.375i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.926+0.375i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(3263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.926+0.375i)
|
Particular Values
L(21) |
≈ |
1.074677317 |
L(21) |
≈ |
1.074677317 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.900+0.433i)T |
| 7 | 1+(0.222+0.974i)T |
| 17 | 1+(−0.623+0.781i)T |
good | 3 | 1+(−0.0990−0.433i)T+(−0.900+0.433i)T2 |
| 5 | 1+(0.900−0.433i)T2 |
| 11 | 1+(−1.62−0.781i)T+(0.623+0.781i)T2 |
| 13 | 1+(−1.62−0.781i)T+(0.623+0.781i)T2 |
| 19 | 1−T2 |
| 23 | 1+(1.12+1.40i)T+(−0.222+0.974i)T2 |
| 29 | 1+(0.222+0.974i)T2 |
| 31 | 1+0.445T+T2 |
| 37 | 1+(0.222+0.974i)T2 |
| 41 | 1+(0.900−0.433i)T2 |
| 43 | 1+(0.900+0.433i)T2 |
| 47 | 1+(−0.623−0.781i)T2 |
| 53 | 1+(0.277+0.347i)T+(−0.222+0.974i)T2 |
| 59 | 1+(0.900+0.433i)T2 |
| 61 | 1+(0.222+0.974i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.277+0.347i)T+(−0.222+0.974i)T2 |
| 73 | 1+(−0.623+0.781i)T2 |
| 79 | 1+1.80T+T2 |
| 83 | 1+(−0.623+0.781i)T2 |
| 89 | 1+(−0.400+0.193i)T+(0.623−0.781i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.064367908270269060946305347559, −8.152707662710964097548883423395, −7.26179947740138308019505865352, −6.70952275722340195837608770161, −6.16430894839717575852009848330, −4.38062174021191912654306776561, −3.99028868104225092765684075007, −3.41001227877780259508319474166, −1.82250609616824249987916364299, −1.10940514060402664446714313459,
1.27612303701564556537178517596, 1.81553218313765028260279962571, 3.25706194755196163332829296173, 4.04689507810119786006619538020, 5.71536426371494847239119233101, 5.88694964728132425346472724850, 6.56127637021715190624354710696, 7.54044513459968227206675373740, 8.259520707283768019916818097614, 8.629506462096311933827393236719