L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.0990 + 0.433i)3-s + (0.623 + 0.781i)4-s + (0.0990 − 0.433i)6-s + (−0.222 − 0.974i)7-s + (−0.222 − 0.974i)8-s + (0.722 − 0.347i)9-s + (1.62 + 0.781i)11-s + (−0.277 + 0.347i)12-s + (1.62 + 0.781i)13-s + (−0.222 + 0.974i)14-s + (−0.222 + 0.974i)16-s + (0.623 − 0.781i)17-s − 0.801·18-s + (0.400 − 0.193i)21-s + (−1.12 − 1.40i)22-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.0990 + 0.433i)3-s + (0.623 + 0.781i)4-s + (0.0990 − 0.433i)6-s + (−0.222 − 0.974i)7-s + (−0.222 − 0.974i)8-s + (0.722 − 0.347i)9-s + (1.62 + 0.781i)11-s + (−0.277 + 0.347i)12-s + (1.62 + 0.781i)13-s + (−0.222 + 0.974i)14-s + (−0.222 + 0.974i)16-s + (0.623 − 0.781i)17-s − 0.801·18-s + (0.400 − 0.193i)21-s + (−1.12 − 1.40i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.926 + 0.375i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.926 + 0.375i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.074677317\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.074677317\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.900 + 0.433i)T \) |
| 7 | \( 1 + (0.222 + 0.974i)T \) |
| 17 | \( 1 + (-0.623 + 0.781i)T \) |
good | 3 | \( 1 + (-0.0990 - 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (-1.62 - 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 13 | \( 1 + (-1.62 - 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (1.12 + 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 29 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + 0.445T + T^{2} \) |
| 37 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 43 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (0.277 + 0.347i)T + (-0.222 + 0.974i)T^{2} \) |
| 59 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 61 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.277 + 0.347i)T + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 + 1.80T + T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (-0.400 + 0.193i)T + (0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.064367908270269060946305347559, −8.152707662710964097548883423395, −7.26179947740138308019505865352, −6.70952275722340195837608770161, −6.16430894839717575852009848330, −4.38062174021191912654306776561, −3.99028868104225092765684075007, −3.41001227877780259508319474166, −1.82250609616824249987916364299, −1.10940514060402664446714313459,
1.27612303701564556537178517596, 1.81553218313765028260279962571, 3.25706194755196163332829296173, 4.04689507810119786006619538020, 5.71536426371494847239119233101, 5.88694964728132425346472724850, 6.56127637021715190624354710696, 7.54044513459968227206675373740, 8.259520707283768019916818097614, 8.629506462096311933827393236719