L(s) = 1 | − 2-s − 1.73·3-s + 4-s + 1.73·6-s − 8-s + 1.99·9-s + 1.73·11-s − 1.73·12-s + 13-s + 16-s + 17-s − 1.99·18-s − 1.73·22-s + 1.73·24-s + 25-s − 26-s − 1.73·27-s − 32-s − 2.99·33-s − 34-s + 1.99·36-s − 1.73·39-s + 1.73·44-s − 1.73·48-s − 50-s − 1.73·51-s + 52-s + ⋯ |
L(s) = 1 | − 2-s − 1.73·3-s + 4-s + 1.73·6-s − 8-s + 1.99·9-s + 1.73·11-s − 1.73·12-s + 13-s + 16-s + 17-s − 1.99·18-s − 1.73·22-s + 1.73·24-s + 25-s − 26-s − 1.73·27-s − 32-s − 2.99·33-s − 34-s + 1.99·36-s − 1.73·39-s + 1.73·44-s − 1.73·48-s − 50-s − 1.73·51-s + 52-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
1
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.5741399158 |
L(21) |
≈ |
0.5741399158 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 7 | 1 |
| 17 | 1−T |
good | 3 | 1+1.73T+T2 |
| 5 | 1−T2 |
| 11 | 1−1.73T+T2 |
| 13 | 1−T+T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1−T2 |
| 53 | 1+T+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1+1.73T+T2 |
| 73 | 1−T2 |
| 79 | 1−1.73T+T2 |
| 83 | 1−T2 |
| 89 | 1−T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.973293562638251319724270053544, −8.056522561671168512024461503494, −7.10350550302749743541646205977, −6.52341598717714413264105181402, −6.07660500680430133180969592635, −5.31004788033584759314288198884, −4.21815871410334199376265175633, −3.29416024314644885509815301305, −1.54204151387104326027237222343, −0.960671531228963139956870116350,
0.960671531228963139956870116350, 1.54204151387104326027237222343, 3.29416024314644885509815301305, 4.21815871410334199376265175633, 5.31004788033584759314288198884, 6.07660500680430133180969592635, 6.52341598717714413264105181402, 7.10350550302749743541646205977, 8.056522561671168512024461503494, 8.973293562638251319724270053544