L(s) = 1 | − 2-s − 0.772·3-s + 4-s + 2.62·5-s + 0.772·6-s + 2.62·7-s − 8-s − 2.40·9-s − 2.62·10-s + 0.597·11-s − 0.772·12-s + 0.175·13-s − 2.62·14-s − 2.03·15-s + 16-s + 6.94·17-s + 2.40·18-s − 5.72·19-s + 2.62·20-s − 2.03·21-s − 0.597·22-s + 0.175·23-s + 0.772·24-s + 1.91·25-s − 0.175·26-s + 4.17·27-s + 2.62·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.446·3-s + 0.5·4-s + 1.17·5-s + 0.315·6-s + 0.993·7-s − 0.353·8-s − 0.800·9-s − 0.831·10-s + 0.180·11-s − 0.223·12-s + 0.0486·13-s − 0.702·14-s − 0.524·15-s + 0.250·16-s + 1.68·17-s + 0.566·18-s − 1.31·19-s + 0.588·20-s − 0.443·21-s − 0.127·22-s + 0.0366·23-s + 0.157·24-s + 0.383·25-s − 0.0344·26-s + 0.803·27-s + 0.496·28-s + ⋯ |
Λ(s)=(=(334s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(334s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.088886781 |
L(21) |
≈ |
1.088886781 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 167 | 1−T |
good | 3 | 1+0.772T+3T2 |
| 5 | 1−2.62T+5T2 |
| 7 | 1−2.62T+7T2 |
| 11 | 1−0.597T+11T2 |
| 13 | 1−0.175T+13T2 |
| 17 | 1−6.94T+17T2 |
| 19 | 1+5.72T+19T2 |
| 23 | 1−0.175T+23T2 |
| 29 | 1−8.62T+29T2 |
| 31 | 1−10.9T+31T2 |
| 37 | 1−0.772T+37T2 |
| 41 | 1−1.82T+41T2 |
| 43 | 1+11.1T+43T2 |
| 47 | 1+6.80T+47T2 |
| 53 | 1−3.05T+53T2 |
| 59 | 1−0.629T+59T2 |
| 61 | 1−9.92T+61T2 |
| 67 | 1+9.22T+67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+13.2T+73T2 |
| 79 | 1+9.43T+79T2 |
| 83 | 1+9.40T+83T2 |
| 89 | 1−17.1T+89T2 |
| 97 | 1+14.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53886503261533368655411124214, −10.37336236014094733029761395797, −9.975743970542972682253605327197, −8.615258997960972993392054725636, −8.109069453549852273810996821938, −6.57826486554111031972700048720, −5.84217987258767075933307270228, −4.82306348846688234177878582182, −2.76298440028912646406152942860, −1.36563292974038541742435107004,
1.36563292974038541742435107004, 2.76298440028912646406152942860, 4.82306348846688234177878582182, 5.84217987258767075933307270228, 6.57826486554111031972700048720, 8.109069453549852273810996821938, 8.615258997960972993392054725636, 9.975743970542972682253605327197, 10.37336236014094733029761395797, 11.53886503261533368655411124214