Properties

Label 2-334-1.1-c1-0-3
Degree $2$
Conductor $334$
Sign $1$
Analytic cond. $2.66700$
Root an. cond. $1.63309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.772·3-s + 4-s + 2.62·5-s + 0.772·6-s + 2.62·7-s − 8-s − 2.40·9-s − 2.62·10-s + 0.597·11-s − 0.772·12-s + 0.175·13-s − 2.62·14-s − 2.03·15-s + 16-s + 6.94·17-s + 2.40·18-s − 5.72·19-s + 2.62·20-s − 2.03·21-s − 0.597·22-s + 0.175·23-s + 0.772·24-s + 1.91·25-s − 0.175·26-s + 4.17·27-s + 2.62·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.446·3-s + 0.5·4-s + 1.17·5-s + 0.315·6-s + 0.993·7-s − 0.353·8-s − 0.800·9-s − 0.831·10-s + 0.180·11-s − 0.223·12-s + 0.0486·13-s − 0.702·14-s − 0.524·15-s + 0.250·16-s + 1.68·17-s + 0.566·18-s − 1.31·19-s + 0.588·20-s − 0.443·21-s − 0.127·22-s + 0.0366·23-s + 0.157·24-s + 0.383·25-s − 0.0344·26-s + 0.803·27-s + 0.496·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(334\)    =    \(2 \cdot 167\)
Sign: $1$
Analytic conductor: \(2.66700\)
Root analytic conductor: \(1.63309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 334,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.088886781\)
\(L(\frac12)\) \(\approx\) \(1.088886781\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
167 \( 1 - T \)
good3 \( 1 + 0.772T + 3T^{2} \)
5 \( 1 - 2.62T + 5T^{2} \)
7 \( 1 - 2.62T + 7T^{2} \)
11 \( 1 - 0.597T + 11T^{2} \)
13 \( 1 - 0.175T + 13T^{2} \)
17 \( 1 - 6.94T + 17T^{2} \)
19 \( 1 + 5.72T + 19T^{2} \)
23 \( 1 - 0.175T + 23T^{2} \)
29 \( 1 - 8.62T + 29T^{2} \)
31 \( 1 - 10.9T + 31T^{2} \)
37 \( 1 - 0.772T + 37T^{2} \)
41 \( 1 - 1.82T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 + 6.80T + 47T^{2} \)
53 \( 1 - 3.05T + 53T^{2} \)
59 \( 1 - 0.629T + 59T^{2} \)
61 \( 1 - 9.92T + 61T^{2} \)
67 \( 1 + 9.22T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 + 13.2T + 73T^{2} \)
79 \( 1 + 9.43T + 79T^{2} \)
83 \( 1 + 9.40T + 83T^{2} \)
89 \( 1 - 17.1T + 89T^{2} \)
97 \( 1 + 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53886503261533368655411124214, −10.37336236014094733029761395797, −9.975743970542972682253605327197, −8.615258997960972993392054725636, −8.109069453549852273810996821938, −6.57826486554111031972700048720, −5.84217987258767075933307270228, −4.82306348846688234177878582182, −2.76298440028912646406152942860, −1.36563292974038541742435107004, 1.36563292974038541742435107004, 2.76298440028912646406152942860, 4.82306348846688234177878582182, 5.84217987258767075933307270228, 6.57826486554111031972700048720, 8.109069453549852273810996821938, 8.615258997960972993392054725636, 9.975743970542972682253605327197, 10.37336236014094733029761395797, 11.53886503261533368655411124214

Graph of the $Z$-function along the critical line