L(s) = 1 | − 2-s + 2.82·3-s + 4-s − 0.414·5-s − 2.82·6-s − 3·7-s − 8-s + 5.00·9-s + 0.414·10-s + 2.82·11-s + 2.82·12-s + 6.82·13-s + 3·14-s − 1.17·15-s + 16-s + 4.82·17-s − 5.00·18-s − 3.65·19-s − 0.414·20-s − 8.48·21-s − 2.82·22-s + 3.17·23-s − 2.82·24-s − 4.82·25-s − 6.82·26-s + 5.65·27-s − 3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.63·3-s + 0.5·4-s − 0.185·5-s − 1.15·6-s − 1.13·7-s − 0.353·8-s + 1.66·9-s + 0.130·10-s + 0.852·11-s + 0.816·12-s + 1.89·13-s + 0.801·14-s − 0.302·15-s + 0.250·16-s + 1.17·17-s − 1.17·18-s − 0.838·19-s − 0.0926·20-s − 1.85·21-s − 0.603·22-s + 0.661·23-s − 0.577·24-s − 0.965·25-s − 1.33·26-s + 1.08·27-s − 0.566·28-s + ⋯ |
Λ(s)=(=(334s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(334s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.557803473 |
L(21) |
≈ |
1.557803473 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 167 | 1−T |
good | 3 | 1−2.82T+3T2 |
| 5 | 1+0.414T+5T2 |
| 7 | 1+3T+7T2 |
| 11 | 1−2.82T+11T2 |
| 13 | 1−6.82T+13T2 |
| 17 | 1−4.82T+17T2 |
| 19 | 1+3.65T+19T2 |
| 23 | 1−3.17T+23T2 |
| 29 | 1−1.17T+29T2 |
| 31 | 1+7.82T+31T2 |
| 37 | 1+7.24T+37T2 |
| 41 | 1−0.343T+41T2 |
| 43 | 1−2T+43T2 |
| 47 | 1+11.4T+47T2 |
| 53 | 1+9.58T+53T2 |
| 59 | 1−6.41T+59T2 |
| 61 | 1−8.48T+61T2 |
| 67 | 1−0.414T+67T2 |
| 71 | 1+2.48T+71T2 |
| 73 | 1+13.6T+73T2 |
| 79 | 1+8.48T+79T2 |
| 83 | 1−14.8T+83T2 |
| 89 | 1−8.65T+89T2 |
| 97 | 1−3.82T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.40862124668015476417861597307, −10.27675099742077063652552279128, −9.427982635605966008212835267409, −8.804495338373476011558112604988, −8.105460500173576049875070469091, −7.01382435850729352939952586464, −6.07967418279830285609275530825, −3.72695237079035098531648530366, −3.30740996308260878574767635524, −1.62732020919446501342281036349,
1.62732020919446501342281036349, 3.30740996308260878574767635524, 3.72695237079035098531648530366, 6.07967418279830285609275530825, 7.01382435850729352939952586464, 8.105460500173576049875070469091, 8.804495338373476011558112604988, 9.427982635605966008212835267409, 10.27675099742077063652552279128, 11.40862124668015476417861597307