Properties

Label 2-334-1.1-c1-0-4
Degree $2$
Conductor $334$
Sign $1$
Analytic cond. $2.66700$
Root an. cond. $1.63309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.82·3-s + 4-s − 0.414·5-s − 2.82·6-s − 3·7-s − 8-s + 5.00·9-s + 0.414·10-s + 2.82·11-s + 2.82·12-s + 6.82·13-s + 3·14-s − 1.17·15-s + 16-s + 4.82·17-s − 5.00·18-s − 3.65·19-s − 0.414·20-s − 8.48·21-s − 2.82·22-s + 3.17·23-s − 2.82·24-s − 4.82·25-s − 6.82·26-s + 5.65·27-s − 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.63·3-s + 0.5·4-s − 0.185·5-s − 1.15·6-s − 1.13·7-s − 0.353·8-s + 1.66·9-s + 0.130·10-s + 0.852·11-s + 0.816·12-s + 1.89·13-s + 0.801·14-s − 0.302·15-s + 0.250·16-s + 1.17·17-s − 1.17·18-s − 0.838·19-s − 0.0926·20-s − 1.85·21-s − 0.603·22-s + 0.661·23-s − 0.577·24-s − 0.965·25-s − 1.33·26-s + 1.08·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 334 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 334 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(334\)    =    \(2 \cdot 167\)
Sign: $1$
Analytic conductor: \(2.66700\)
Root analytic conductor: \(1.63309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 334,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.557803473\)
\(L(\frac12)\) \(\approx\) \(1.557803473\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
167 \( 1 - T \)
good3 \( 1 - 2.82T + 3T^{2} \)
5 \( 1 + 0.414T + 5T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
11 \( 1 - 2.82T + 11T^{2} \)
13 \( 1 - 6.82T + 13T^{2} \)
17 \( 1 - 4.82T + 17T^{2} \)
19 \( 1 + 3.65T + 19T^{2} \)
23 \( 1 - 3.17T + 23T^{2} \)
29 \( 1 - 1.17T + 29T^{2} \)
31 \( 1 + 7.82T + 31T^{2} \)
37 \( 1 + 7.24T + 37T^{2} \)
41 \( 1 - 0.343T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 11.4T + 47T^{2} \)
53 \( 1 + 9.58T + 53T^{2} \)
59 \( 1 - 6.41T + 59T^{2} \)
61 \( 1 - 8.48T + 61T^{2} \)
67 \( 1 - 0.414T + 67T^{2} \)
71 \( 1 + 2.48T + 71T^{2} \)
73 \( 1 + 13.6T + 73T^{2} \)
79 \( 1 + 8.48T + 79T^{2} \)
83 \( 1 - 14.8T + 83T^{2} \)
89 \( 1 - 8.65T + 89T^{2} \)
97 \( 1 - 3.82T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.40862124668015476417861597307, −10.27675099742077063652552279128, −9.427982635605966008212835267409, −8.804495338373476011558112604988, −8.105460500173576049875070469091, −7.01382435850729352939952586464, −6.07967418279830285609275530825, −3.72695237079035098531648530366, −3.30740996308260878574767635524, −1.62732020919446501342281036349, 1.62732020919446501342281036349, 3.30740996308260878574767635524, 3.72695237079035098531648530366, 6.07967418279830285609275530825, 7.01382435850729352939952586464, 8.105460500173576049875070469091, 8.804495338373476011558112604988, 9.427982635605966008212835267409, 10.27675099742077063652552279128, 11.40862124668015476417861597307

Graph of the $Z$-function along the critical line