L(s) = 1 | + 2-s + 1.17·3-s + 4-s − 5-s + 1.17·6-s + 7-s + 8-s − 1.61·9-s − 10-s + 4.25·11-s + 1.17·12-s + 3.43·13-s + 14-s − 1.17·15-s + 16-s + 4.61·17-s − 1.61·18-s − 5.79·19-s − 20-s + 1.17·21-s + 4.25·22-s − 8.65·23-s + 1.17·24-s − 4·25-s + 3.43·26-s − 5.43·27-s + 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.680·3-s + 0.5·4-s − 0.447·5-s + 0.480·6-s + 0.377·7-s + 0.353·8-s − 0.537·9-s − 0.316·10-s + 1.28·11-s + 0.340·12-s + 0.952·13-s + 0.267·14-s − 0.304·15-s + 0.250·16-s + 1.11·17-s − 0.379·18-s − 1.32·19-s − 0.223·20-s + 0.257·21-s + 0.907·22-s − 1.80·23-s + 0.240·24-s − 0.800·25-s + 0.673·26-s − 1.04·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(334s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(334s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.352430020 |
L(21) |
≈ |
2.352430020 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 167 | 1+T |
good | 3 | 1−1.17T+3T2 |
| 5 | 1+T+5T2 |
| 7 | 1−T+7T2 |
| 11 | 1−4.25T+11T2 |
| 13 | 1−3.43T+13T2 |
| 17 | 1−4.61T+17T2 |
| 19 | 1+5.79T+19T2 |
| 23 | 1+8.65T+23T2 |
| 29 | 1+1.43T+29T2 |
| 31 | 1−3.86T+31T2 |
| 37 | 1+3.25T+37T2 |
| 41 | 1+3.43T+41T2 |
| 43 | 1+10.4T+43T2 |
| 47 | 1−12.0T+47T2 |
| 53 | 1−7.82T+53T2 |
| 59 | 1+4.22T+59T2 |
| 61 | 1+13.2T+61T2 |
| 67 | 1−15.1T+67T2 |
| 71 | 1−8.86T+71T2 |
| 73 | 1−2.40T+73T2 |
| 79 | 1−14.6T+79T2 |
| 83 | 1+1.46T+83T2 |
| 89 | 1+7.14T+89T2 |
| 97 | 1+17.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.80064522074982062923253944016, −10.86947952739194722489204994603, −9.686233204477995910583280532148, −8.459843000246331077527942259582, −7.993865581387037858329963090199, −6.56871535579198105366446357127, −5.70510342973306760500478597807, −4.11898576121633435982316952097, −3.52050833451732964621868825321, −1.89290360434619087347588841501,
1.89290360434619087347588841501, 3.52050833451732964621868825321, 4.11898576121633435982316952097, 5.70510342973306760500478597807, 6.56871535579198105366446357127, 7.993865581387037858329963090199, 8.459843000246331077527942259582, 9.686233204477995910583280532148, 10.86947952739194722489204994603, 11.80064522074982062923253944016