L(s) = 1 | + (−0.726 + 0.686i)2-s + (0.683 + 3.23i)3-s + (0.0567 − 0.998i)4-s + (−0.0475 − 2.51i)5-s + (−2.72 − 1.88i)6-s + (1.57 + 2.01i)7-s + (0.644 + 0.764i)8-s + (−7.27 + 3.21i)9-s + (1.76 + 1.79i)10-s + (−1.95 + 1.14i)11-s + (3.27 − 0.499i)12-s + (−6.48 + 2.58i)13-s + (−2.52 − 0.385i)14-s + (8.10 − 1.87i)15-s + (−0.993 − 0.113i)16-s + (4.71 + 3.00i)17-s + ⋯ |
L(s) = 1 | + (−0.513 + 0.485i)2-s + (0.394 + 1.86i)3-s + (0.0283 − 0.499i)4-s + (−0.0212 − 1.12i)5-s + (−1.11 − 0.769i)6-s + (0.594 + 0.762i)7-s + (0.227 + 0.270i)8-s + (−2.42 + 1.07i)9-s + (0.556 + 0.567i)10-s + (−0.587 + 0.344i)11-s + (0.944 − 0.144i)12-s + (−1.79 + 0.715i)13-s + (−0.675 − 0.103i)14-s + (2.09 − 0.483i)15-s + (−0.248 − 0.0283i)16-s + (1.14 + 0.728i)17-s + ⋯ |
Λ(s)=(=(334s/2ΓC(s)L(s)(−0.970−0.241i)Λ(2−s)
Λ(s)=(=(334s/2ΓC(s+1/2)L(s)(−0.970−0.241i)Λ(1−s)
Degree: |
2 |
Conductor: |
334
= 2⋅167
|
Sign: |
−0.970−0.241i
|
Analytic conductor: |
2.66700 |
Root analytic conductor: |
1.63309 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ334(267,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 334, ( :1/2), −0.970−0.241i)
|
Particular Values
L(1) |
≈ |
0.117696+0.961261i |
L(21) |
≈ |
0.117696+0.961261i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.726−0.686i)T |
| 167 | 1+(−1.61+12.8i)T |
good | 3 | 1+(−0.683−3.23i)T+(−2.74+1.21i)T2 |
| 5 | 1+(0.0475+2.51i)T+(−4.99+0.189i)T2 |
| 7 | 1+(−1.57−2.01i)T+(−1.70+6.78i)T2 |
| 11 | 1+(1.95−1.14i)T+(5.37−9.59i)T2 |
| 13 | 1+(6.48−2.58i)T+(9.44−8.92i)T2 |
| 17 | 1+(−4.71−3.00i)T+(7.16+15.4i)T2 |
| 19 | 1+(1.84−3.60i)T+(−11.1−15.4i)T2 |
| 23 | 1+(−6.11+1.90i)T+(18.9−13.0i)T2 |
| 29 | 1+(2.83+0.886i)T+(23.8+16.5i)T2 |
| 31 | 1+(0.542+4.07i)T+(−29.9+8.11i)T2 |
| 37 | 1+(−6.93−3.06i)T+(24.8+27.3i)T2 |
| 41 | 1+(−3.17+0.862i)T+(35.3−20.7i)T2 |
| 43 | 1+(2.24−0.170i)T+(42.5−6.48i)T2 |
| 47 | 1+(−9.41−7.06i)T+(13.1+45.1i)T2 |
| 53 | 1+(−3.42+1.83i)T+(29.3−44.1i)T2 |
| 59 | 1+(−2.53+1.62i)T+(24.8−53.4i)T2 |
| 61 | 1+(0.290−0.871i)T+(−48.8−36.5i)T2 |
| 67 | 1+(−0.145+7.70i)T+(−66.9−2.53i)T2 |
| 71 | 1+(−8.39−7.34i)T+(9.37+70.3i)T2 |
| 73 | 1+(10.8−1.23i)T+(71.1−16.4i)T2 |
| 79 | 1+(−10.5−3.74i)T+(61.3+49.7i)T2 |
| 83 | 1+(−0.129−0.122i)T+(4.70+82.8i)T2 |
| 89 | 1+(4.00+0.925i)T+(79.9+39.0i)T2 |
| 97 | 1+(0.0717−0.538i)T+(−93.6−25.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.81219294406015274817134452304, −10.70394233904279951485171141592, −9.781253071312958745097173202030, −9.311285824001888704237874816353, −8.460355498073946553654506970300, −7.75170928814285074720956570515, −5.63419879398033619281149082918, −5.01989259000747921543548596410, −4.28200351455711434205113593468, −2.43124678868022497080853072641,
0.76433168766087696457038781384, 2.47363108958515855469423608181, 3.04825018086542026393477338866, 5.35449820088457539773582238673, 6.96824958419846274374362390760, 7.37693110404926727869280614670, 7.87997071577110781480874019446, 9.166682452790109260314183168077, 10.44564494651848378140674576490, 11.18372150358776302645486052478