L(s) = 1 | + (−0.862 − 0.505i)2-s + (−0.996 − 0.311i)3-s + (0.489 + 0.872i)4-s + (−0.305 + 1.77i)5-s + (0.702 + 0.772i)6-s + (0.166 + 0.498i)7-s + (0.0189 − 0.999i)8-s + (−1.57 − 1.08i)9-s + (1.16 − 1.38i)10-s + (0.0502 − 0.884i)11-s + (−0.215 − 1.02i)12-s + (−4.08 − 1.10i)13-s + (0.108 − 0.514i)14-s + (0.858 − 1.67i)15-s + (−0.521 + 0.853i)16-s + (−1.27 − 3.03i)17-s + ⋯ |
L(s) = 1 | + (−0.610 − 0.357i)2-s + (−0.575 − 0.179i)3-s + (0.244 + 0.436i)4-s + (−0.136 + 0.795i)5-s + (0.286 + 0.315i)6-s + (0.0628 + 0.188i)7-s + (0.00669 − 0.353i)8-s + (−0.523 − 0.362i)9-s + (0.367 − 0.436i)10-s + (0.0151 − 0.266i)11-s + (−0.0622 − 0.294i)12-s + (−1.13 − 0.307i)13-s + (0.0290 − 0.137i)14-s + (0.221 − 0.433i)15-s + (−0.130 + 0.213i)16-s + (−0.308 − 0.735i)17-s + ⋯ |
Λ(s)=(=(334s/2ΓC(s)L(s)(−0.992−0.126i)Λ(2−s)
Λ(s)=(=(334s/2ΓC(s+1/2)L(s)(−0.992−0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
334
= 2⋅167
|
Sign: |
−0.992−0.126i
|
Analytic conductor: |
2.66700 |
Root analytic conductor: |
1.63309 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ334(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 334, ( :1/2), −0.992−0.126i)
|
Particular Values
L(1) |
≈ |
0.00251495+0.0396994i |
L(21) |
≈ |
0.00251495+0.0396994i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.862+0.505i)T |
| 167 | 1+(12.0+4.57i)T |
good | 3 | 1+(0.996+0.311i)T+(2.46+1.70i)T2 |
| 5 | 1+(0.305−1.77i)T+(−4.71−1.67i)T2 |
| 7 | 1+(−0.166−0.498i)T+(−5.60+4.19i)T2 |
| 11 | 1+(−0.0502+0.884i)T+(−10.9−1.24i)T2 |
| 13 | 1+(4.08+1.10i)T+(11.2+6.57i)T2 |
| 17 | 1+(1.27+3.03i)T+(−11.9+12.1i)T2 |
| 19 | 1+(1.68+0.822i)T+(11.6+14.9i)T2 |
| 23 | 1+(7.95−3.51i)T+(15.4−17.0i)T2 |
| 29 | 1+(8.07+3.57i)T+(19.5+21.4i)T2 |
| 31 | 1+(−1.58+0.630i)T+(22.5−21.2i)T2 |
| 37 | 1+(5.84−4.04i)T+(13.0−34.6i)T2 |
| 41 | 1+(2.49−2.36i)T+(2.32−40.9i)T2 |
| 43 | 1+(−2.92−2.37i)T+(8.88+42.0i)T2 |
| 47 | 1+(4.03+2.16i)T+(26.0+39.1i)T2 |
| 53 | 1+(2.66+9.13i)T+(−44.6+28.5i)T2 |
| 59 | 1+(2.15−5.13i)T+(−41.3−42.1i)T2 |
| 61 | 1+(−2.77+11.0i)T+(−53.7−28.8i)T2 |
| 67 | 1+(−1.70−9.89i)T+(−63.1+22.3i)T2 |
| 71 | 1+(−4.10+0.786i)T+(65.9−26.2i)T2 |
| 73 | 1+(1.93+3.16i)T+(−33.2+64.9i)T2 |
| 79 | 1+(−15.4−1.17i)T+(78.0+11.9i)T2 |
| 83 | 1+(8.07−4.73i)T+(40.5−72.3i)T2 |
| 89 | 1+(−1.50−2.94i)T+(−52.0+72.2i)T2 |
| 97 | 1+(−4.64−1.84i)T+(70.5+66.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.26472602460600254317472543951, −10.18905223258397344085568972408, −9.414261878584136800945875439842, −8.236516005311753412634972525860, −7.25739398871403276452922282008, −6.37375871410145265421826092340, −5.22611383162453156588560036110, −3.52360285298388318265375745916, −2.31743121922312073954223488370, −0.03371578345849030252214087909,
2.06287499936268107195555854037, 4.26687094781197803153387635316, 5.22545943895526725421416042804, 6.20499247872842008968300079249, 7.41097086341672710590512977546, 8.342132061352627075835891439226, 9.155143207898469318648447677775, 10.25425433208388023271845384359, 10.90160201960093013068423721525, 12.07654947331746046688662961430