L(s) = 1 | + (0.752 + 0.658i)2-s + (−3.27 + 0.124i)3-s + (0.132 + 0.991i)4-s + (−1.74 − 1.11i)5-s + (−2.54 − 2.06i)6-s + (0.0421 + 0.0689i)7-s + (−0.553 + 0.832i)8-s + (7.74 − 0.587i)9-s + (−0.581 − 1.99i)10-s + (1.96 + 0.376i)11-s + (−0.556 − 3.23i)12-s + (1.36 − 3.63i)13-s + (−0.0136 + 0.0795i)14-s + (5.87 + 3.44i)15-s + (−0.965 + 0.261i)16-s + (1.43 − 5.72i)17-s + ⋯ |
L(s) = 1 | + (0.531 + 0.465i)2-s + (−1.89 + 0.0716i)3-s + (0.0660 + 0.495i)4-s + (−0.782 − 0.498i)5-s + (−1.04 − 0.843i)6-s + (0.0159 + 0.0260i)7-s + (−0.195 + 0.294i)8-s + (2.58 − 0.195i)9-s + (−0.183 − 0.629i)10-s + (0.592 + 0.113i)11-s + (−0.160 − 0.933i)12-s + (0.378 − 1.00i)13-s + (−0.00365 + 0.0212i)14-s + (1.51 + 0.888i)15-s + (−0.241 + 0.0654i)16-s + (0.348 − 1.38i)17-s + ⋯ |
Λ(s)=(=(334s/2ΓC(s)L(s)(0.910+0.412i)Λ(2−s)
Λ(s)=(=(334s/2ΓC(s+1/2)L(s)(0.910+0.412i)Λ(1−s)
Degree: |
2 |
Conductor: |
334
= 2⋅167
|
Sign: |
0.910+0.412i
|
Analytic conductor: |
2.66700 |
Root analytic conductor: |
1.63309 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ334(275,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 334, ( :1/2), 0.910+0.412i)
|
Particular Values
L(1) |
≈ |
0.780195−0.168603i |
L(21) |
≈ |
0.780195−0.168603i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.752−0.658i)T |
| 167 | 1+(12.9+0.719i)T |
good | 3 | 1+(3.27−0.124i)T+(2.99−0.226i)T2 |
| 5 | 1+(1.74+1.11i)T+(2.10+4.53i)T2 |
| 7 | 1+(−0.0421−0.0689i)T+(−3.18+6.23i)T2 |
| 11 | 1+(−1.96−0.376i)T+(10.2+4.06i)T2 |
| 13 | 1+(−1.36+3.63i)T+(−9.78−8.56i)T2 |
| 17 | 1+(−1.43+5.72i)T+(−14.9−8.03i)T2 |
| 19 | 1+(−0.0943−1.65i)T+(−18.8+2.15i)T2 |
| 23 | 1+(−5.32+1.88i)T+(17.8−14.4i)T2 |
| 29 | 1+(−5.25−1.86i)T+(22.5+18.2i)T2 |
| 31 | 1+(0.674+0.741i)T+(−2.92+30.8i)T2 |
| 37 | 1+(11.2+0.856i)T+(36.5+5.58i)T2 |
| 41 | 1+(0.247−2.60i)T+(−40.2−7.71i)T2 |
| 43 | 1+(0.387−0.459i)T+(−7.28−42.3i)T2 |
| 47 | 1+(−4.08+1.99i)T+(28.9−37.0i)T2 |
| 53 | 1+(−6.17+8.56i)T+(−16.7−50.2i)T2 |
| 59 | 1+(2.82+11.2i)T+(−52.0+27.8i)T2 |
| 61 | 1+(5.92−1.36i)T+(54.8−26.7i)T2 |
| 67 | 1+(−5.43+3.46i)T+(28.2−60.7i)T2 |
| 71 | 1+(−2.03−0.898i)T+(47.7+52.5i)T2 |
| 73 | 1+(−15.2−4.14i)T+(62.9+36.8i)T2 |
| 79 | 1+(9.25−9.43i)T+(−1.49−78.9i)T2 |
| 83 | 1+(8.04−7.04i)T+(10.9−82.2i)T2 |
| 89 | 1+(−2.11+1.23i)T+(43.5−77.6i)T2 |
| 97 | 1+(−7.48+8.23i)T+(−9.16−96.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.71797719084356548170087719200, −10.91116697674650901756367082682, −9.910013297493164090311125117845, −8.484938618595156653321843228768, −7.26145067045419334334531930240, −6.56684158309104848346177960322, −5.35740530596350079791595140034, −4.88163225004317365959592882951, −3.68266030059911567147969238715, −0.70922002108513417616745239382,
1.34385923221794237186496345108, 3.71614050667496382295987113224, 4.55851574115543603601394288084, 5.73108492728255187834607798118, 6.57882699310333475317617082674, 7.31029041550441401517971593803, 9.053838665662984278914361036450, 10.50249285996345166361816730282, 10.81839195373916709991892777395, 11.80958935804312712006777251996