Properties

Label 2-336-1.1-c3-0-11
Degree $2$
Conductor $336$
Sign $-1$
Analytic cond. $19.8246$
Root an. cond. $4.45248$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 10·5-s + 7·7-s + 9·9-s + 52·11-s − 10·13-s + 30·15-s − 54·17-s + 52·19-s − 21·21-s − 48·23-s − 25·25-s − 27·27-s − 186·29-s − 224·31-s − 156·33-s − 70·35-s + 94·37-s + 30·39-s − 478·41-s + 316·43-s − 90·45-s − 256·47-s + 49·49-s + 162·51-s − 66·53-s − 520·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.377·7-s + 1/3·9-s + 1.42·11-s − 0.213·13-s + 0.516·15-s − 0.770·17-s + 0.627·19-s − 0.218·21-s − 0.435·23-s − 1/5·25-s − 0.192·27-s − 1.19·29-s − 1.29·31-s − 0.822·33-s − 0.338·35-s + 0.417·37-s + 0.123·39-s − 1.82·41-s + 1.12·43-s − 0.298·45-s − 0.794·47-s + 1/7·49-s + 0.444·51-s − 0.171·53-s − 1.27·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(19.8246\)
Root analytic conductor: \(4.45248\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 336,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
7 \( 1 - p T \)
good5 \( 1 + 2 p T + p^{3} T^{2} \)
11 \( 1 - 52 T + p^{3} T^{2} \)
13 \( 1 + 10 T + p^{3} T^{2} \)
17 \( 1 + 54 T + p^{3} T^{2} \)
19 \( 1 - 52 T + p^{3} T^{2} \)
23 \( 1 + 48 T + p^{3} T^{2} \)
29 \( 1 + 186 T + p^{3} T^{2} \)
31 \( 1 + 224 T + p^{3} T^{2} \)
37 \( 1 - 94 T + p^{3} T^{2} \)
41 \( 1 + 478 T + p^{3} T^{2} \)
43 \( 1 - 316 T + p^{3} T^{2} \)
47 \( 1 + 256 T + p^{3} T^{2} \)
53 \( 1 + 66 T + p^{3} T^{2} \)
59 \( 1 + 420 T + p^{3} T^{2} \)
61 \( 1 - 342 T + p^{3} T^{2} \)
67 \( 1 + 668 T + p^{3} T^{2} \)
71 \( 1 - 272 T + p^{3} T^{2} \)
73 \( 1 + 86 T + p^{3} T^{2} \)
79 \( 1 + 1360 T + p^{3} T^{2} \)
83 \( 1 + 188 T + p^{3} T^{2} \)
89 \( 1 + 366 T + p^{3} T^{2} \)
97 \( 1 - 1554 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.00438315739502686108727715319, −9.705202424256222519039528277498, −8.818123833378362311540019908528, −7.65784883778203192769729337697, −6.86730016472715386841331681963, −5.72119366176637657418582837601, −4.46893636727600929425998276421, −3.63226233488322435021179897075, −1.62871813279808016586018622682, 0, 1.62871813279808016586018622682, 3.63226233488322435021179897075, 4.46893636727600929425998276421, 5.72119366176637657418582837601, 6.86730016472715386841331681963, 7.65784883778203192769729337697, 8.818123833378362311540019908528, 9.705202424256222519039528277498, 11.00438315739502686108727715319

Graph of the $Z$-function along the critical line