L(s) = 1 | + 3·3-s + 18·5-s − 7·7-s + 9·9-s + 72·11-s − 34·13-s + 54·15-s + 6·17-s − 92·19-s − 21·21-s + 180·23-s + 199·25-s + 27·27-s − 114·29-s − 56·31-s + 216·33-s − 126·35-s − 34·37-s − 102·39-s + 6·41-s − 164·43-s + 162·45-s − 168·47-s + 49·49-s + 18·51-s + 654·53-s + 1.29e3·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.60·5-s − 0.377·7-s + 1/3·9-s + 1.97·11-s − 0.725·13-s + 0.929·15-s + 0.0856·17-s − 1.11·19-s − 0.218·21-s + 1.63·23-s + 1.59·25-s + 0.192·27-s − 0.729·29-s − 0.324·31-s + 1.13·33-s − 0.608·35-s − 0.151·37-s − 0.418·39-s + 0.0228·41-s − 0.581·43-s + 0.536·45-s − 0.521·47-s + 1/7·49-s + 0.0494·51-s + 1.69·53-s + 3.17·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(336s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.167690738 |
L(21) |
≈ |
3.167690738 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 7 | 1+pT |
good | 5 | 1−18T+p3T2 |
| 11 | 1−72T+p3T2 |
| 13 | 1+34T+p3T2 |
| 17 | 1−6T+p3T2 |
| 19 | 1+92T+p3T2 |
| 23 | 1−180T+p3T2 |
| 29 | 1+114T+p3T2 |
| 31 | 1+56T+p3T2 |
| 37 | 1+34T+p3T2 |
| 41 | 1−6T+p3T2 |
| 43 | 1+164T+p3T2 |
| 47 | 1+168T+p3T2 |
| 53 | 1−654T+p3T2 |
| 59 | 1−492T+p3T2 |
| 61 | 1+250T+p3T2 |
| 67 | 1−124T+p3T2 |
| 71 | 1+36T+p3T2 |
| 73 | 1−1010T+p3T2 |
| 79 | 1+56T+p3T2 |
| 83 | 1+228T+p3T2 |
| 89 | 1−390T+p3T2 |
| 97 | 1+70T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97063371379144635756312674025, −9.887411038356644898325913128793, −9.309185910214281596244060836286, −8.704711987937490937472325150768, −6.98841003189115270424790114680, −6.44031836747561565089771180367, −5.23966758715370911869091302667, −3.85577483848919244336909269014, −2.46611696453234412923932194191, −1.37817848240816738073129413396,
1.37817848240816738073129413396, 2.46611696453234412923932194191, 3.85577483848919244336909269014, 5.23966758715370911869091302667, 6.44031836747561565089771180367, 6.98841003189115270424790114680, 8.704711987937490937472325150768, 9.309185910214281596244060836286, 9.887411038356644898325913128793, 10.97063371379144635756312674025