L(s) = 1 | + 9·3-s + 78·5-s − 49·7-s + 81·9-s − 444·11-s − 442·13-s + 702·15-s − 126·17-s − 2.68e3·19-s − 441·21-s − 4.20e3·23-s + 2.95e3·25-s + 729·27-s − 5.44e3·29-s − 80·31-s − 3.99e3·33-s − 3.82e3·35-s − 5.43e3·37-s − 3.97e3·39-s + 7.96e3·41-s + 1.15e4·43-s + 6.31e3·45-s + 1.39e4·47-s + 2.40e3·49-s − 1.13e3·51-s − 9.59e3·53-s − 3.46e4·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.39·5-s − 0.377·7-s + 1/3·9-s − 1.10·11-s − 0.725·13-s + 0.805·15-s − 0.105·17-s − 1.70·19-s − 0.218·21-s − 1.65·23-s + 0.946·25-s + 0.192·27-s − 1.20·29-s − 0.0149·31-s − 0.638·33-s − 0.527·35-s − 0.652·37-s − 0.418·39-s + 0.739·41-s + 0.950·43-s + 0.465·45-s + 0.919·47-s + 1/7·49-s − 0.0610·51-s − 0.469·53-s − 1.54·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−p2T |
| 7 | 1+p2T |
good | 5 | 1−78T+p5T2 |
| 11 | 1+444T+p5T2 |
| 13 | 1+34pT+p5T2 |
| 17 | 1+126T+p5T2 |
| 19 | 1+2684T+p5T2 |
| 23 | 1+4200T+p5T2 |
| 29 | 1+5442T+p5T2 |
| 31 | 1+80T+p5T2 |
| 37 | 1+5434T+p5T2 |
| 41 | 1−7962T+p5T2 |
| 43 | 1−268pT+p5T2 |
| 47 | 1−13920T+p5T2 |
| 53 | 1+9594T+p5T2 |
| 59 | 1+27492T+p5T2 |
| 61 | 1−49478T+p5T2 |
| 67 | 1−59356T+p5T2 |
| 71 | 1+32040T+p5T2 |
| 73 | 1+61846T+p5T2 |
| 79 | 1−65776T+p5T2 |
| 83 | 1+40188T+p5T2 |
| 89 | 1+7974T+p5T2 |
| 97 | 1+143662T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10430115718847556130352365208, −9.475976354722215030326769534513, −8.471816156807295115973758140692, −7.43480032203906778389900176978, −6.25192840392640455084044631646, −5.44475809352900994440653809888, −4.11105977679246028849055617928, −2.52697664561500972094960474988, −1.98735456118617454596188627028, 0,
1.98735456118617454596188627028, 2.52697664561500972094960474988, 4.11105977679246028849055617928, 5.44475809352900994440653809888, 6.25192840392640455084044631646, 7.43480032203906778389900176978, 8.471816156807295115973758140692, 9.475976354722215030326769534513, 10.10430115718847556130352365208