L(s) = 1 | − 27·3-s − 470·5-s + 343·7-s + 729·9-s − 1.84e3·11-s + 758·13-s + 1.26e4·15-s − 2.80e4·17-s + 4.59e4·19-s − 9.26e3·21-s − 6.23e4·23-s + 1.42e5·25-s − 1.96e4·27-s + 7.63e4·29-s + 1.31e5·31-s + 4.96e4·33-s − 1.61e5·35-s + 3.98e5·37-s − 2.04e4·39-s + 7.13e5·41-s + 2.87e4·43-s − 3.42e5·45-s − 6.65e4·47-s + 1.17e5·49-s + 7.57e5·51-s + 1.29e6·53-s + 8.64e5·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.68·5-s + 0.377·7-s + 1/3·9-s − 0.416·11-s + 0.0956·13-s + 0.970·15-s − 1.38·17-s + 1.53·19-s − 0.218·21-s − 1.06·23-s + 1.82·25-s − 0.192·27-s + 0.581·29-s + 0.793·31-s + 0.240·33-s − 0.635·35-s + 1.29·37-s − 0.0552·39-s + 1.61·41-s + 0.0551·43-s − 0.560·45-s − 0.0934·47-s + 1/7·49-s + 0.800·51-s + 1.19·53-s + 0.700·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(336s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p3T |
| 7 | 1−p3T |
good | 5 | 1+94pT+p7T2 |
| 11 | 1+1840T+p7T2 |
| 13 | 1−758T+p7T2 |
| 17 | 1+28074T+p7T2 |
| 19 | 1−45964T+p7T2 |
| 23 | 1+62388T+p7T2 |
| 29 | 1−76350T+p7T2 |
| 31 | 1−131608T+p7T2 |
| 37 | 1−398302T+p7T2 |
| 41 | 1−713878T+p7T2 |
| 43 | 1−28732T+p7T2 |
| 47 | 1+66536T+p7T2 |
| 53 | 1−1298190T+p7T2 |
| 59 | 1+1391148T+p7T2 |
| 61 | 1−176718T+p7T2 |
| 67 | 1−1776316T+p7T2 |
| 71 | 1+4271948T+p7T2 |
| 73 | 1+4333742T+p7T2 |
| 79 | 1+5771608T+p7T2 |
| 83 | 1+2231596T+p7T2 |
| 89 | 1+2844858T+p7T2 |
| 97 | 1−10995690T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06751396284755050487590056083, −8.766926663063306060938156321591, −7.83711715665402621355991520630, −7.23367984794848062668579830388, −5.98536170928427807705861703007, −4.68729106515621719227420897389, −4.07687360952368824765778892869, −2.73079204744218209092662342045, −0.983822571355788850850709103626, 0,
0.983822571355788850850709103626, 2.73079204744218209092662342045, 4.07687360952368824765778892869, 4.68729106515621719227420897389, 5.98536170928427807705861703007, 7.23367984794848062668579830388, 7.83711715665402621355991520630, 8.766926663063306060938156321591, 10.06751396284755050487590056083