Properties

Label 2-336-1.1-c7-0-6
Degree $2$
Conductor $336$
Sign $1$
Analytic cond. $104.961$
Root an. cond. $10.2450$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s − 18·5-s − 343·7-s + 729·9-s − 8.17e3·11-s − 1.42e4·13-s − 486·15-s − 2.14e4·17-s + 5.88e3·19-s − 9.26e3·21-s + 9.87e4·23-s − 7.78e4·25-s + 1.96e4·27-s + 1.65e5·29-s + 2.41e5·31-s − 2.20e5·33-s + 6.17e3·35-s + 1.85e5·37-s − 3.84e5·39-s + 5.96e4·41-s + 8.09e5·43-s − 1.31e4·45-s − 9.42e5·47-s + 1.17e5·49-s − 5.79e5·51-s + 2.26e5·53-s + 1.47e5·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.0643·5-s − 0.377·7-s + 1/3·9-s − 1.85·11-s − 1.79·13-s − 0.0371·15-s − 1.05·17-s + 0.196·19-s − 0.218·21-s + 1.69·23-s − 0.995·25-s + 0.192·27-s + 1.25·29-s + 1.45·31-s − 1.06·33-s + 0.0243·35-s + 0.601·37-s − 1.03·39-s + 0.135·41-s + 1.55·43-s − 0.0214·45-s − 1.32·47-s + 1/7·49-s − 0.611·51-s + 0.208·53-s + 0.119·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(104.961\)
Root analytic conductor: \(10.2450\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.574608791\)
\(L(\frac12)\) \(\approx\) \(1.574608791\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{3} T \)
7 \( 1 + p^{3} T \)
good5 \( 1 + 18 T + p^{7} T^{2} \)
11 \( 1 + 8172 T + p^{7} T^{2} \)
13 \( 1 + 14242 T + p^{7} T^{2} \)
17 \( 1 + 21462 T + p^{7} T^{2} \)
19 \( 1 - 5884 T + p^{7} T^{2} \)
23 \( 1 - 98784 T + p^{7} T^{2} \)
29 \( 1 - 165174 T + p^{7} T^{2} \)
31 \( 1 - 241312 T + p^{7} T^{2} \)
37 \( 1 - 185438 T + p^{7} T^{2} \)
41 \( 1 - 59682 T + p^{7} T^{2} \)
43 \( 1 - 809308 T + p^{7} T^{2} \)
47 \( 1 + 942096 T + p^{7} T^{2} \)
53 \( 1 - 226398 T + p^{7} T^{2} \)
59 \( 1 - 2205732 T + p^{7} T^{2} \)
61 \( 1 + 1156690 T + p^{7} T^{2} \)
67 \( 1 - 3740404 T + p^{7} T^{2} \)
71 \( 1 - 2593296 T + p^{7} T^{2} \)
73 \( 1 + 1038742 T + p^{7} T^{2} \)
79 \( 1 + 2280032 T + p^{7} T^{2} \)
83 \( 1 - 283404 T + p^{7} T^{2} \)
89 \( 1 + 5227230 T + p^{7} T^{2} \)
97 \( 1 - 6168770 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15169264930751325884542090445, −9.560751493136091847202281625442, −8.373787111207332661564329029926, −7.58918404875320912701682763041, −6.73170219722989646104878986482, −5.24539060509774471326636344483, −4.49131744632304455943523559193, −2.80749075884772852403606027762, −2.45098324817472424885529743416, −0.54833022780874073047632440046, 0.54833022780874073047632440046, 2.45098324817472424885529743416, 2.80749075884772852403606027762, 4.49131744632304455943523559193, 5.24539060509774471326636344483, 6.73170219722989646104878986482, 7.58918404875320912701682763041, 8.373787111207332661564329029926, 9.560751493136091847202281625442, 10.15169264930751325884542090445

Graph of the $Z$-function along the critical line