L(s) = 1 | + (−7.46 + 13.6i)3-s + 31.0i·5-s + 49i·7-s + (−131. − 204. i)9-s + 273.·11-s + 431.·13-s + (−424. − 231. i)15-s + 648. i·17-s + 2.30e3i·19-s + (−670. − 365. i)21-s + 3.72e3·23-s + 2.16e3·25-s + (3.77e3 − 274. i)27-s + 7.00e3i·29-s − 1.72e3i·31-s + ⋯ |
L(s) = 1 | + (−0.478 + 0.877i)3-s + 0.554i·5-s + 0.377i·7-s + (−0.541 − 0.840i)9-s + 0.680·11-s + 0.708·13-s + (−0.486 − 0.265i)15-s + 0.544i·17-s + 1.46i·19-s + (−0.331 − 0.181i)21-s + 1.46·23-s + 0.692·25-s + (0.997 − 0.0723i)27-s + 1.54i·29-s − 0.322i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.877 - 0.478i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.877 - 0.478i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.599892995\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.599892995\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (7.46 - 13.6i)T \) |
| 7 | \( 1 - 49iT \) |
good | 5 | \( 1 - 31.0iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 273.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 431.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 648. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.30e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 3.72e3T + 6.43e6T^{2} \) |
| 29 | \( 1 - 7.00e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 1.72e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 + 1.22e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + 1.66e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 9.18e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 2.32e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.91e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 1.03e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 7.05e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 4.61e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 7.59e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 5.11e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 1.06e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 6.75e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 7.33e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 1.34e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73486720385611442455124385419, −10.58210909759988946993360758069, −9.190989470223700092415579688826, −8.649397589502309823894958726179, −7.09357917006337208741881973573, −6.14564600161974753559646952875, −5.27846358951135628295567176978, −3.95739494579378857883922664173, −3.13325638942362249827475710812, −1.31613767352388530754515189236,
0.51336832573608185852432090710, 1.31483080086695799086820037546, 2.84208721762975740231967984598, 4.45371700839426727125233820058, 5.41524465824240818456266116270, 6.63835599994528283945214646074, 7.22327280798519055389670522057, 8.502476597024468503012514956317, 9.166075354273378441828158262232, 10.57934306398198466200771466755