L(s) = 1 | + (−7.46 + 13.6i)3-s + 31.0i·5-s + 49i·7-s + (−131. − 204. i)9-s + 273.·11-s + 431.·13-s + (−424. − 231. i)15-s + 648. i·17-s + 2.30e3i·19-s + (−670. − 365. i)21-s + 3.72e3·23-s + 2.16e3·25-s + (3.77e3 − 274. i)27-s + 7.00e3i·29-s − 1.72e3i·31-s + ⋯ |
L(s) = 1 | + (−0.478 + 0.877i)3-s + 0.554i·5-s + 0.377i·7-s + (−0.541 − 0.840i)9-s + 0.680·11-s + 0.708·13-s + (−0.486 − 0.265i)15-s + 0.544i·17-s + 1.46i·19-s + (−0.331 − 0.181i)21-s + 1.46·23-s + 0.692·25-s + (0.997 − 0.0723i)27-s + 1.54i·29-s − 0.322i·31-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)(−0.877−0.478i)Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)(−0.877−0.478i)Λ(1−s)
Degree: |
2 |
Conductor: |
336
= 24⋅3⋅7
|
Sign: |
−0.877−0.478i
|
Analytic conductor: |
53.8889 |
Root analytic conductor: |
7.34091 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ336(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 336, ( :5/2), −0.877−0.478i)
|
Particular Values
L(3) |
≈ |
1.599892995 |
L(21) |
≈ |
1.599892995 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(7.46−13.6i)T |
| 7 | 1−49iT |
good | 5 | 1−31.0iT−3.12e3T2 |
| 11 | 1−273.T+1.61e5T2 |
| 13 | 1−431.T+3.71e5T2 |
| 17 | 1−648.iT−1.41e6T2 |
| 19 | 1−2.30e3iT−2.47e6T2 |
| 23 | 1−3.72e3T+6.43e6T2 |
| 29 | 1−7.00e3iT−2.05e7T2 |
| 31 | 1+1.72e3iT−2.86e7T2 |
| 37 | 1+1.22e4T+6.93e7T2 |
| 41 | 1+1.66e4iT−1.15e8T2 |
| 43 | 1−9.18e3iT−1.47e8T2 |
| 47 | 1−2.32e4T+2.29e8T2 |
| 53 | 1−1.91e4iT−4.18e8T2 |
| 59 | 1−1.03e4T+7.14e8T2 |
| 61 | 1+7.05e3T+8.44e8T2 |
| 67 | 1+4.61e4iT−1.35e9T2 |
| 71 | 1+7.59e4T+1.80e9T2 |
| 73 | 1+5.11e4T+2.07e9T2 |
| 79 | 1−1.06e4iT−3.07e9T2 |
| 83 | 1−6.75e4T+3.93e9T2 |
| 89 | 1−7.33e4iT−5.58e9T2 |
| 97 | 1+1.34e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73486720385611442455124385419, −10.58210909759988946993360758069, −9.190989470223700092415579688826, −8.649397589502309823894958726179, −7.09357917006337208741881973573, −6.14564600161974753559646952875, −5.27846358951135628295567176978, −3.95739494579378857883922664173, −3.13325638942362249827475710812, −1.31613767352388530754515189236,
0.51336832573608185852432090710, 1.31483080086695799086820037546, 2.84208721762975740231967984598, 4.45371700839426727125233820058, 5.41524465824240818456266116270, 6.63835599994528283945214646074, 7.22327280798519055389670522057, 8.502476597024468503012514956317, 9.166075354273378441828158262232, 10.57934306398198466200771466755