L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s − 1.73i·13-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.5 + 0.866i)25-s − 0.999·27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (1.49 − 0.866i)39-s − 1.73i·43-s + (−0.499 − 0.866i)49-s + 0.999·57-s + (−0.499 − 0.866i)63-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s − 1.73i·13-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.5 + 0.866i)25-s − 0.999·27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (1.49 − 0.866i)39-s − 1.73i·43-s + (−0.499 − 0.866i)49-s + 0.999·57-s + (−0.499 − 0.866i)63-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Λ(s)=(=(336s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
336
= 24⋅3⋅7
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
0.167685 |
Root analytic conductor: |
0.409494 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ336(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 336, ( :0), 0.605−0.795i)
|
Particular Values
L(21) |
≈ |
0.8730590423 |
L(21) |
≈ |
0.8730590423 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(0.5−0.866i)T |
good | 5 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+1.73iT−T2 |
| 17 | 1+(−0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+1.73iT−T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 79 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.83470131765548927722160539289, −10.81322302568007167509701406376, −10.01000503464762470263496778463, −9.143574091934530282597870978785, −8.402858085987475224802568629153, −7.30692268328685899386654459694, −5.74976060019054884004783797835, −5.06907325214552342847721444665, −3.50072774304019219696254866375, −2.64751132197174822660784344246,
1.64775074292703857978510329863, 3.24457330532503732332431365700, 4.39197089541265841994041399687, 6.14864048087207485936368315123, 6.91443082553018309362574742675, 7.70496573747162889374351318459, 8.853429178655813035505718096920, 9.625824014948470037125116238875, 10.75648860056283010391157240057, 11.85532507274903725776029889146