Properties

Label 2-336-84.47-c0-0-0
Degree $2$
Conductor $336$
Sign $0.605 - 0.795i$
Analytic cond. $0.167685$
Root an. cond. $0.409494$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s − 1.73i·13-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.5 + 0.866i)25-s − 0.999·27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (1.49 − 0.866i)39-s − 1.73i·43-s + (−0.499 − 0.866i)49-s + 0.999·57-s + (−0.499 − 0.866i)63-s + ⋯
L(s)  = 1  + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s − 1.73i·13-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.5 + 0.866i)25-s − 0.999·27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (1.49 − 0.866i)39-s − 1.73i·43-s + (−0.499 − 0.866i)49-s + 0.999·57-s + (−0.499 − 0.866i)63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $0.605 - 0.795i$
Analytic conductor: \(0.167685\)
Root analytic conductor: \(0.409494\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :0),\ 0.605 - 0.795i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8730590423\)
\(L(\frac12)\) \(\approx\) \(0.8730590423\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.5 - 0.866i)T \)
7 \( 1 + (0.5 - 0.866i)T \)
good5 \( 1 + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + 1.73iT - T^{2} \)
17 \( 1 + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + 1.73iT - T^{2} \)
47 \( 1 + (0.5 + 0.866i)T^{2} \)
53 \( 1 + (0.5 - 0.866i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + (-0.5 - 0.866i)T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.83470131765548927722160539289, −10.81322302568007167509701406376, −10.01000503464762470263496778463, −9.143574091934530282597870978785, −8.402858085987475224802568629153, −7.30692268328685899386654459694, −5.74976060019054884004783797835, −5.06907325214552342847721444665, −3.50072774304019219696254866375, −2.64751132197174822660784344246, 1.64775074292703857978510329863, 3.24457330532503732332431365700, 4.39197089541265841994041399687, 6.14864048087207485936368315123, 6.91443082553018309362574742675, 7.70496573747162889374351318459, 8.853429178655813035505718096920, 9.625824014948470037125116238875, 10.75648860056283010391157240057, 11.85532507274903725776029889146

Graph of the $Z$-function along the critical line