L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s − 1.73i·13-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.5 + 0.866i)25-s − 0.999·27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (1.49 − 0.866i)39-s − 1.73i·43-s + (−0.499 − 0.866i)49-s + 0.999·57-s + (−0.499 − 0.866i)63-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s − 1.73i·13-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.5 + 0.866i)25-s − 0.999·27-s + (−0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (1.49 − 0.866i)39-s − 1.73i·43-s + (−0.499 − 0.866i)49-s + 0.999·57-s + (−0.499 − 0.866i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8730590423\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8730590423\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + 1.73iT - T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 1.73iT - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83470131765548927722160539289, −10.81322302568007167509701406376, −10.01000503464762470263496778463, −9.143574091934530282597870978785, −8.402858085987475224802568629153, −7.30692268328685899386654459694, −5.74976060019054884004783797835, −5.06907325214552342847721444665, −3.50072774304019219696254866375, −2.64751132197174822660784344246,
1.64775074292703857978510329863, 3.24457330532503732332431365700, 4.39197089541265841994041399687, 6.14864048087207485936368315123, 6.91443082553018309362574742675, 7.70496573747162889374351318459, 8.853429178655813035505718096920, 9.625824014948470037125116238875, 10.75648860056283010391157240057, 11.85532507274903725776029889146