L(s) = 1 | − 3-s + 5-s − 7-s + 9-s + 4·11-s − 2·13-s − 15-s − 2·17-s + 8·19-s + 21-s + 25-s − 27-s − 2·29-s − 4·33-s − 35-s − 6·37-s + 2·39-s + 2·41-s + 4·43-s + 45-s + 8·47-s + 49-s + 2·51-s − 6·53-s + 4·55-s − 8·57-s − 2·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.258·15-s − 0.485·17-s + 1.83·19-s + 0.218·21-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.696·33-s − 0.169·35-s − 0.986·37-s + 0.320·39-s + 0.312·41-s + 0.609·43-s + 0.149·45-s + 1.16·47-s + 1/7·49-s + 0.280·51-s − 0.824·53-s + 0.539·55-s − 1.05·57-s − 0.256·61-s + ⋯ |
Λ(s)=(=(3360s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3360s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.682598714 |
L(21) |
≈ |
1.682598714 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1−T |
| 7 | 1+T |
good | 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−4T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−18T+pT2 |
| 97 | 1−6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.890905071405940263807660308258, −7.64478753337256159133360922574, −7.06086036239019688063680452315, −6.35316640417836655320198380518, −5.63632782549750996248123136110, −4.91380017540757573217630253175, −3.97110146144033917413647839403, −3.09040679008008900975048055760, −1.89425390748404433456997372556, −0.818727734574118390759677993169,
0.818727734574118390759677993169, 1.89425390748404433456997372556, 3.09040679008008900975048055760, 3.97110146144033917413647839403, 4.91380017540757573217630253175, 5.63632782549750996248123136110, 6.35316640417836655320198380518, 7.06086036239019688063680452315, 7.64478753337256159133360922574, 8.890905071405940263807660308258