L(s) = 1 | − 3-s + 5-s − 7-s + 9-s + 4·11-s − 2·13-s − 15-s − 2·17-s + 8·19-s + 21-s + 25-s − 27-s − 2·29-s − 4·33-s − 35-s − 6·37-s + 2·39-s + 2·41-s + 4·43-s + 45-s + 8·47-s + 49-s + 2·51-s − 6·53-s + 4·55-s − 8·57-s − 2·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.258·15-s − 0.485·17-s + 1.83·19-s + 0.218·21-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.696·33-s − 0.169·35-s − 0.986·37-s + 0.320·39-s + 0.312·41-s + 0.609·43-s + 0.149·45-s + 1.16·47-s + 1/7·49-s + 0.280·51-s − 0.824·53-s + 0.539·55-s − 1.05·57-s − 0.256·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.682598714\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.682598714\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + T \) |
good | 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 4 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 18 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.890905071405940263807660308258, −7.64478753337256159133360922574, −7.06086036239019688063680452315, −6.35316640417836655320198380518, −5.63632782549750996248123136110, −4.91380017540757573217630253175, −3.97110146144033917413647839403, −3.09040679008008900975048055760, −1.89425390748404433456997372556, −0.818727734574118390759677993169,
0.818727734574118390759677993169, 1.89425390748404433456997372556, 3.09040679008008900975048055760, 3.97110146144033917413647839403, 4.91380017540757573217630253175, 5.63632782549750996248123136110, 6.35316640417836655320198380518, 7.06086036239019688063680452315, 7.64478753337256159133360922574, 8.890905071405940263807660308258