L(s) = 1 | − 2·2-s − 8.86·3-s + 4·4-s − 16.8·5-s + 17.7·6-s − 10.8·7-s − 8·8-s + 51.5·9-s + 33.7·10-s + 35.1·11-s − 35.4·12-s + 21.7·14-s + 149.·15-s + 16·16-s + 30.3·17-s − 103.·18-s + 28.3·19-s − 67.4·20-s + 96.3·21-s − 70.3·22-s − 24.6·23-s + 70.9·24-s + 159.·25-s − 218.·27-s − 43.4·28-s + 290.·29-s − 299.·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.70·3-s + 0.5·4-s − 1.50·5-s + 1.20·6-s − 0.586·7-s − 0.353·8-s + 1.91·9-s + 1.06·10-s + 0.964·11-s − 0.853·12-s + 0.414·14-s + 2.57·15-s + 0.250·16-s + 0.432·17-s − 1.35·18-s + 0.342·19-s − 0.754·20-s + 1.00·21-s − 0.682·22-s − 0.223·23-s + 0.603·24-s + 1.27·25-s − 1.55·27-s − 0.293·28-s + 1.85·29-s − 1.81·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 13 | 1 |
good | 3 | 1+8.86T+27T2 |
| 5 | 1+16.8T+125T2 |
| 7 | 1+10.8T+343T2 |
| 11 | 1−35.1T+1.33e3T2 |
| 17 | 1−30.3T+4.91e3T2 |
| 19 | 1−28.3T+6.85e3T2 |
| 23 | 1+24.6T+1.21e4T2 |
| 29 | 1−290.T+2.43e4T2 |
| 31 | 1+219.T+2.97e4T2 |
| 37 | 1+118.T+5.06e4T2 |
| 41 | 1+83.6T+6.89e4T2 |
| 43 | 1−293.T+7.95e4T2 |
| 47 | 1−166.T+1.03e5T2 |
| 53 | 1+76.3T+1.48e5T2 |
| 59 | 1+184.T+2.05e5T2 |
| 61 | 1−197.T+2.26e5T2 |
| 67 | 1+321.T+3.00e5T2 |
| 71 | 1−368.T+3.57e5T2 |
| 73 | 1+843.T+3.89e5T2 |
| 79 | 1−184.T+4.93e5T2 |
| 83 | 1+1.27e3T+5.71e5T2 |
| 89 | 1−1.36e3T+7.04e5T2 |
| 97 | 1−690.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80548420381294106932270366918, −9.972954005536728734943577911733, −8.802698797584223237786149020416, −7.56287049042641503345827577619, −6.83800568967202682896615138911, −5.96486402895414887560376149598, −4.63285351153799202281635447035, −3.52344255058554531854459970568, −1.03152159367182028220753386786, 0,
1.03152159367182028220753386786, 3.52344255058554531854459970568, 4.63285351153799202281635447035, 5.96486402895414887560376149598, 6.83800568967202682896615138911, 7.56287049042641503345827577619, 8.802698797584223237786149020416, 9.972954005536728734943577911733, 10.80548420381294106932270366918