L(s) = 1 | − 2·2-s − 8.74·3-s + 4·4-s + 14.1·5-s + 17.4·6-s − 28.6·7-s − 8·8-s + 49.4·9-s − 28.3·10-s − 9.49·11-s − 34.9·12-s + 57.3·14-s − 123.·15-s + 16·16-s + 30.6·17-s − 98.8·18-s + 153.·19-s + 56.6·20-s + 250.·21-s + 18.9·22-s − 36.0·23-s + 69.9·24-s + 75.7·25-s − 195.·27-s − 114.·28-s − 49.2·29-s + 247.·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.68·3-s + 0.5·4-s + 1.26·5-s + 1.18·6-s − 1.54·7-s − 0.353·8-s + 1.82·9-s − 0.896·10-s − 0.260·11-s − 0.841·12-s + 1.09·14-s − 2.13·15-s + 0.250·16-s + 0.436·17-s − 1.29·18-s + 1.85·19-s + 0.633·20-s + 2.60·21-s + 0.184·22-s − 0.326·23-s + 0.594·24-s + 0.605·25-s − 1.39·27-s − 0.773·28-s − 0.315·29-s + 1.50·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 13 | 1 |
good | 3 | 1+8.74T+27T2 |
| 5 | 1−14.1T+125T2 |
| 7 | 1+28.6T+343T2 |
| 11 | 1+9.49T+1.33e3T2 |
| 17 | 1−30.6T+4.91e3T2 |
| 19 | 1−153.T+6.85e3T2 |
| 23 | 1+36.0T+1.21e4T2 |
| 29 | 1+49.2T+2.43e4T2 |
| 31 | 1−166.T+2.97e4T2 |
| 37 | 1+23.8T+5.06e4T2 |
| 41 | 1−125.T+6.89e4T2 |
| 43 | 1+434.T+7.95e4T2 |
| 47 | 1+186.T+1.03e5T2 |
| 53 | 1+400.T+1.48e5T2 |
| 59 | 1+408.T+2.05e5T2 |
| 61 | 1+603.T+2.26e5T2 |
| 67 | 1+287.T+3.00e5T2 |
| 71 | 1+961.T+3.57e5T2 |
| 73 | 1−963.T+3.89e5T2 |
| 79 | 1+1.04e3T+4.93e5T2 |
| 83 | 1−313.T+5.71e5T2 |
| 89 | 1−675.T+7.04e5T2 |
| 97 | 1+272.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33486292913899436312384140668, −9.925702154443383169015997146298, −9.314968194200030264335050396064, −7.50834841728014522185643938619, −6.44938967469256768990783514218, −6.00036715608835709021637542600, −5.11453507943084730085066258499, −3.09799543880049557304905635076, −1.31893702792134027444339857185, 0,
1.31893702792134027444339857185, 3.09799543880049557304905635076, 5.11453507943084730085066258499, 6.00036715608835709021637542600, 6.44938967469256768990783514218, 7.50834841728014522185643938619, 9.314968194200030264335050396064, 9.925702154443383169015997146298, 10.33486292913899436312384140668