L(s) = 1 | + 2·2-s − 8.74·3-s + 4·4-s − 14.1·5-s − 17.4·6-s + 28.6·7-s + 8·8-s + 49.4·9-s − 28.3·10-s + 9.49·11-s − 34.9·12-s + 57.3·14-s + 123.·15-s + 16·16-s + 30.6·17-s + 98.8·18-s − 153.·19-s − 56.6·20-s − 250.·21-s + 18.9·22-s − 36.0·23-s − 69.9·24-s + 75.7·25-s − 195.·27-s + 114.·28-s − 49.2·29-s + 247.·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.68·3-s + 0.5·4-s − 1.26·5-s − 1.18·6-s + 1.54·7-s + 0.353·8-s + 1.82·9-s − 0.896·10-s + 0.260·11-s − 0.841·12-s + 1.09·14-s + 2.13·15-s + 0.250·16-s + 0.436·17-s + 1.29·18-s − 1.85·19-s − 0.633·20-s − 2.60·21-s + 0.184·22-s − 0.326·23-s − 0.594·24-s + 0.605·25-s − 1.39·27-s + 0.773·28-s − 0.315·29-s + 1.50·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(338s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 13 | 1 |
good | 3 | 1+8.74T+27T2 |
| 5 | 1+14.1T+125T2 |
| 7 | 1−28.6T+343T2 |
| 11 | 1−9.49T+1.33e3T2 |
| 17 | 1−30.6T+4.91e3T2 |
| 19 | 1+153.T+6.85e3T2 |
| 23 | 1+36.0T+1.21e4T2 |
| 29 | 1+49.2T+2.43e4T2 |
| 31 | 1+166.T+2.97e4T2 |
| 37 | 1−23.8T+5.06e4T2 |
| 41 | 1+125.T+6.89e4T2 |
| 43 | 1+434.T+7.95e4T2 |
| 47 | 1−186.T+1.03e5T2 |
| 53 | 1+400.T+1.48e5T2 |
| 59 | 1−408.T+2.05e5T2 |
| 61 | 1+603.T+2.26e5T2 |
| 67 | 1−287.T+3.00e5T2 |
| 71 | 1−961.T+3.57e5T2 |
| 73 | 1+963.T+3.89e5T2 |
| 79 | 1+1.04e3T+4.93e5T2 |
| 83 | 1+313.T+5.71e5T2 |
| 89 | 1+675.T+7.04e5T2 |
| 97 | 1−272.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13560687951914897708822533800, −10.36336385795582514943056424227, −8.441189085427010324408310589220, −7.56168898559857528462365604453, −6.58960387294069296928596017652, −5.49299655178688413413213451763, −4.63266403495741658358346260135, −3.96893277192529443669136453283, −1.61856147907232594001964941251, 0,
1.61856147907232594001964941251, 3.96893277192529443669136453283, 4.63266403495741658358346260135, 5.49299655178688413413213451763, 6.58960387294069296928596017652, 7.56168898559857528462365604453, 8.441189085427010324408310589220, 10.36336385795582514943056424227, 11.13560687951914897708822533800