L(s) = 1 | + i·2-s + 2.35·3-s − 4-s + 0.890i·5-s + 2.35i·6-s + 4.49i·7-s − i·8-s + 2.55·9-s − 0.890·10-s − 2.69i·11-s − 2.35·12-s − 4.49·14-s + 2.09i·15-s + 16-s − 3.58·17-s + 2.55i·18-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.36·3-s − 0.5·4-s + 0.398i·5-s + 0.962i·6-s + 1.69i·7-s − 0.353i·8-s + 0.851·9-s − 0.281·10-s − 0.811i·11-s − 0.680·12-s − 1.20·14-s + 0.541i·15-s + 0.250·16-s − 0.868·17-s + 0.602i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0304 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0304 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34219 + 1.30188i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34219 + 1.30188i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 2.35T + 3T^{2} \) |
| 5 | \( 1 - 0.890iT - 5T^{2} \) |
| 7 | \( 1 - 4.49iT - 7T^{2} \) |
| 11 | \( 1 + 2.69iT - 11T^{2} \) |
| 17 | \( 1 + 3.58T + 17T^{2} \) |
| 19 | \( 1 + 2.93iT - 19T^{2} \) |
| 23 | \( 1 - 6.09T + 23T^{2} \) |
| 29 | \( 1 - 2.98T + 29T^{2} \) |
| 31 | \( 1 + 2.39iT - 31T^{2} \) |
| 37 | \( 1 - 1.50iT - 37T^{2} \) |
| 41 | \( 1 + 3.65iT - 41T^{2} \) |
| 43 | \( 1 + 0.170T + 43T^{2} \) |
| 47 | \( 1 + 5.20iT - 47T^{2} \) |
| 53 | \( 1 - 6.09T + 53T^{2} \) |
| 59 | \( 1 + 3.07iT - 59T^{2} \) |
| 61 | \( 1 + 13.9T + 61T^{2} \) |
| 67 | \( 1 - 11.0iT - 67T^{2} \) |
| 71 | \( 1 + 10.0iT - 71T^{2} \) |
| 73 | \( 1 + 10.9iT - 73T^{2} \) |
| 79 | \( 1 - 2.81T + 79T^{2} \) |
| 83 | \( 1 - 2.93iT - 83T^{2} \) |
| 89 | \( 1 + 12.1iT - 89T^{2} \) |
| 97 | \( 1 - 12.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85640433446130502167651413798, −10.77504573192763220100176117260, −9.270824225578546871512975247830, −8.882270577871141719572348289069, −8.282874339280578244700172004824, −7.06726461701306438080338256548, −6.05068560950295705100068242991, −4.89404505612156742491595940295, −3.24439438021732674384514175994, −2.44457143953595459335701192797,
1.36532783804410111046656701360, 2.86455585472134964059290587836, 3.98611647356628423337514117727, 4.75134476885713122634305475743, 6.86236379213455161399702346428, 7.70569317492863907635810165615, 8.662247785862802145917985596001, 9.470068944905294044316091223976, 10.33242152266622065880616166804, 11.09321996409962345467663912464