L(s) = 1 | + i·2-s + 2.35·3-s − 4-s + 0.890i·5-s + 2.35i·6-s + 4.49i·7-s − i·8-s + 2.55·9-s − 0.890·10-s − 2.69i·11-s − 2.35·12-s − 4.49·14-s + 2.09i·15-s + 16-s − 3.58·17-s + 2.55i·18-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.36·3-s − 0.5·4-s + 0.398i·5-s + 0.962i·6-s + 1.69i·7-s − 0.353i·8-s + 0.851·9-s − 0.281·10-s − 0.811i·11-s − 0.680·12-s − 1.20·14-s + 0.541i·15-s + 0.250·16-s − 0.868·17-s + 0.602i·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.0304−0.999i)Λ(2−s)
Λ(s)=(=(338s/2ΓC(s+1/2)L(s)(0.0304−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.0304−0.999i
|
Analytic conductor: |
2.69894 |
Root analytic conductor: |
1.64284 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :1/2), 0.0304−0.999i)
|
Particular Values
L(1) |
≈ |
1.34219+1.30188i |
L(21) |
≈ |
1.34219+1.30188i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 13 | 1 |
good | 3 | 1−2.35T+3T2 |
| 5 | 1−0.890iT−5T2 |
| 7 | 1−4.49iT−7T2 |
| 11 | 1+2.69iT−11T2 |
| 17 | 1+3.58T+17T2 |
| 19 | 1+2.93iT−19T2 |
| 23 | 1−6.09T+23T2 |
| 29 | 1−2.98T+29T2 |
| 31 | 1+2.39iT−31T2 |
| 37 | 1−1.50iT−37T2 |
| 41 | 1+3.65iT−41T2 |
| 43 | 1+0.170T+43T2 |
| 47 | 1+5.20iT−47T2 |
| 53 | 1−6.09T+53T2 |
| 59 | 1+3.07iT−59T2 |
| 61 | 1+13.9T+61T2 |
| 67 | 1−11.0iT−67T2 |
| 71 | 1+10.0iT−71T2 |
| 73 | 1+10.9iT−73T2 |
| 79 | 1−2.81T+79T2 |
| 83 | 1−2.93iT−83T2 |
| 89 | 1+12.1iT−89T2 |
| 97 | 1−12.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85640433446130502167651413798, −10.77504573192763220100176117260, −9.270824225578546871512975247830, −8.882270577871141719572348289069, −8.282874339280578244700172004824, −7.06726461701306438080338256548, −6.05068560950295705100068242991, −4.89404505612156742491595940295, −3.24439438021732674384514175994, −2.44457143953595459335701192797,
1.36532783804410111046656701360, 2.86455585472134964059290587836, 3.98611647356628423337514117727, 4.75134476885713122634305475743, 6.86236379213455161399702346428, 7.70569317492863907635810165615, 8.662247785862802145917985596001, 9.470068944905294044316091223976, 10.33242152266622065880616166804, 11.09321996409962345467663912464