L(s) = 1 | + (0.5 + 0.866i)2-s + (1.5 + 2.59i)3-s + (−0.499 + 0.866i)4-s + 5-s + (−1.5 + 2.59i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + (−3 + 5.19i)9-s + (0.5 + 0.866i)10-s + (−1 − 1.73i)11-s − 3·12-s + 0.999·14-s + (1.5 + 2.59i)15-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s − 6·18-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.866 + 1.49i)3-s + (−0.249 + 0.433i)4-s + 0.447·5-s + (−0.612 + 1.06i)6-s + (0.188 − 0.327i)7-s − 0.353·8-s + (−1 + 1.73i)9-s + (0.158 + 0.273i)10-s + (−0.301 − 0.522i)11-s − 0.866·12-s + 0.267·14-s + (0.387 + 0.670i)15-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s − 1.41·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(−0.522−0.852i)Λ(2−s)
Λ(s)=(=(338s/2ΓC(s+1/2)L(s)(−0.522−0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
−0.522−0.852i
|
Analytic conductor: |
2.69894 |
Root analytic conductor: |
1.64284 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(315,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :1/2), −0.522−0.852i)
|
Particular Values
L(1) |
≈ |
1.02078+1.82160i |
L(21) |
≈ |
1.02078+1.82160i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 13 | 1 |
good | 3 | 1+(−1.5−2.59i)T+(−1.5+2.59i)T2 |
| 5 | 1−T+5T2 |
| 7 | 1+(−0.5+0.866i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3+5.19i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2−3.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1+1.73i)T+(−14.5+25.1i)T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(−1.5−2.59i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−20.5+35.5i)T2 |
| 43 | 1+(−2.5+4.33i)T+(−21.5−37.2i)T2 |
| 47 | 1+13T+47T2 |
| 53 | 1−12T+53T2 |
| 59 | 1+(5−8.66i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4+6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1+1.73i)T+(−33.5+58.0i)T2 |
| 71 | 1+(2.5−4.33i)T+(−35.5−61.4i)T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+(−3−5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−7+12.1i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64355721635335982740632901120, −10.77899740582499712534371250157, −9.704886083943442512656515031659, −9.209112803371729887947257938045, −8.192547814175295956492418782356, −7.23163919789772636519910985104, −5.62261035511708516711623105950, −4.89321223784464746283057464781, −3.76962507835140844885983781499, −2.78493287904463981493756497039,
1.50951539290733269938389551045, 2.38435336386728289082888716944, 3.63021027940924732879525151077, 5.40768158342631322031597599700, 6.38893399675427216344801348518, 7.53667461946666212315676486900, 8.319660007028431413684904528859, 9.337977912137359312454990147230, 10.28165707151217771111895206168, 11.59894487277404434885648120520