L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + 3·5-s + (−0.499 + 0.866i)6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (1 − 1.73i)9-s + (−1.5 − 2.59i)10-s + (3 + 5.19i)11-s + 0.999·12-s + 0.999·14-s + (−1.5 − 2.59i)15-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s − 2·18-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + 1.34·5-s + (−0.204 + 0.353i)6-s + (−0.188 + 0.327i)7-s + 0.353·8-s + (0.333 − 0.577i)9-s + (−0.474 − 0.821i)10-s + (0.904 + 1.56i)11-s + 0.288·12-s + 0.267·14-s + (−0.387 − 0.670i)15-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s − 0.471·18-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)(0.522+0.852i)Λ(2−s)
Λ(s)=(=(338s/2ΓC(s+1/2)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
338
= 2⋅132
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
2.69894 |
Root analytic conductor: |
1.64284 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ338(315,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 338, ( :1/2), 0.522+0.852i)
|
Particular Values
L(1) |
≈ |
1.12269−0.629133i |
L(21) |
≈ |
1.12269−0.629133i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 13 | 1 |
good | 3 | 1+(0.5+0.866i)T+(−1.5+2.59i)T2 |
| 5 | 1−3T+5T2 |
| 7 | 1+(0.5−0.866i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−3−5.19i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1+1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(3.5+6.06i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−20.5+35.5i)T2 |
| 43 | 1+(−0.5+0.866i)T+(−21.5−37.2i)T2 |
| 47 | 1+3T+47T2 |
| 53 | 1+53T2 |
| 59 | 1+(3−5.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4−6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−7−12.1i)T+(−33.5+58.0i)T2 |
| 71 | 1+(1.5−2.59i)T+(−35.5−61.4i)T2 |
| 73 | 1+2T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+12T+83T2 |
| 89 | 1+(3+5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5−8.66i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60967619699366416382551611675, −10.19873472295498509785689001808, −9.572584113146321138249905525998, −9.101405691148172230036869748750, −7.42364860981592227254693409780, −6.63631819452094475795831718184, −5.59186003148210604003732412198, −4.20393011018552674614268859520, −2.46865455591262811545435441123, −1.39614105227617374038853612553,
1.51527637428858548459108106953, 3.55887349022475377528249598166, 5.06130526409527960770800136433, 5.92134663573667486756704022253, 6.62572093069655918811370948820, 8.026027357253440522006233339658, 9.001602777616016471459907645130, 9.864935025021312356477139897005, 10.49186441281234235838314060196, 11.35543051478638778090258748762