L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + 3·5-s + (−0.499 + 0.866i)6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (1 − 1.73i)9-s + (−1.5 − 2.59i)10-s + (3 + 5.19i)11-s + 0.999·12-s + 0.999·14-s + (−1.5 − 2.59i)15-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s − 2·18-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + 1.34·5-s + (−0.204 + 0.353i)6-s + (−0.188 + 0.327i)7-s + 0.353·8-s + (0.333 − 0.577i)9-s + (−0.474 − 0.821i)10-s + (0.904 + 1.56i)11-s + 0.288·12-s + 0.267·14-s + (−0.387 − 0.670i)15-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s − 0.471·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12269 - 0.629133i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12269 - 0.629133i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3T + 5T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (3.5 + 6.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3T + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (3 - 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7 - 12.1i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.5 - 2.59i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5 - 8.66i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60967619699366416382551611675, −10.19873472295498509785689001808, −9.572584113146321138249905525998, −9.101405691148172230036869748750, −7.42364860981592227254693409780, −6.63631819452094475795831718184, −5.59186003148210604003732412198, −4.20393011018552674614268859520, −2.46865455591262811545435441123, −1.39614105227617374038853612553,
1.51527637428858548459108106953, 3.55887349022475377528249598166, 5.06130526409527960770800136433, 5.92134663573667486756704022253, 6.62572093069655918811370948820, 8.026027357253440522006233339658, 9.001602777616016471459907645130, 9.864935025021312356477139897005, 10.49186441281234235838314060196, 11.35543051478638778090258748762