L(s) = 1 | − 2·2-s + 2·4-s − 4·5-s − 7-s + 8·10-s + 2·13-s + 2·14-s − 4·16-s + 4·17-s + 3·19-s − 8·20-s − 2·23-s + 11·25-s − 4·26-s − 2·28-s + 6·29-s − 5·31-s + 8·32-s − 8·34-s + 4·35-s + 3·37-s − 6·38-s − 2·41-s − 12·43-s + 4·46-s − 2·47-s − 6·49-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 1.78·5-s − 0.377·7-s + 2.52·10-s + 0.554·13-s + 0.534·14-s − 16-s + 0.970·17-s + 0.688·19-s − 1.78·20-s − 0.417·23-s + 11/5·25-s − 0.784·26-s − 0.377·28-s + 1.11·29-s − 0.898·31-s + 1.41·32-s − 1.37·34-s + 0.676·35-s + 0.493·37-s − 0.973·38-s − 0.312·41-s − 1.82·43-s + 0.589·46-s − 0.291·47-s − 6/7·49-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1089s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+pT+pT2 |
| 5 | 1+4T+pT2 |
| 7 | 1+T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1−3T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+5T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+12T+pT2 |
| 47 | 1+2T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1+3T+pT2 |
| 67 | 1+T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−11T+pT2 |
| 79 | 1+11T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1−5T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.427976724918087578878267878502, −8.345816310960391722598141882781, −8.118926450037046023972998230501, −7.28899889706555778737663428863, −6.56051958738602663681229923169, −5.05774622025620960162902603755, −3.93444342612617848308073041065, −3.09166168739687900450908810991, −1.23603098910894570836676745841, 0,
1.23603098910894570836676745841, 3.09166168739687900450908810991, 3.93444342612617848308073041065, 5.05774622025620960162902603755, 6.56051958738602663681229923169, 7.28899889706555778737663428863, 8.118926450037046023972998230501, 8.345816310960391722598141882781, 9.427976724918087578878267878502