Properties

Label 2-33e2-1.1-c1-0-18
Degree $2$
Conductor $1089$
Sign $1$
Analytic cond. $8.69570$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.54·2-s + 0.381·4-s + 1.54·5-s − 0.236·7-s − 2.49·8-s + 2.38·10-s + 4.23·13-s − 0.364·14-s − 4.61·16-s + 5.94·17-s + 4.61·19-s + 0.589·20-s + 7.49·23-s − 2.61·25-s + 6.53·26-s − 0.0901·28-s − 1.90·29-s − 2.38·31-s − 2.13·32-s + 9.18·34-s − 0.364·35-s + 6.23·37-s + 7.12·38-s − 3.85·40-s − 5.58·41-s + 10.7·43-s + 11.5·46-s + ⋯
L(s)  = 1  + 1.09·2-s + 0.190·4-s + 0.690·5-s − 0.0892·7-s − 0.882·8-s + 0.753·10-s + 1.17·13-s − 0.0973·14-s − 1.15·16-s + 1.44·17-s + 1.05·19-s + 0.131·20-s + 1.56·23-s − 0.523·25-s + 1.28·26-s − 0.0170·28-s − 0.354·29-s − 0.427·31-s − 0.377·32-s + 1.57·34-s − 0.0615·35-s + 1.02·37-s + 1.15·38-s − 0.609·40-s − 0.872·41-s + 1.63·43-s + 1.70·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(8.69570\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1089,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.028009133\)
\(L(\frac12)\) \(\approx\) \(3.028009133\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - 1.54T + 2T^{2} \)
5 \( 1 - 1.54T + 5T^{2} \)
7 \( 1 + 0.236T + 7T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 - 5.94T + 17T^{2} \)
19 \( 1 - 4.61T + 19T^{2} \)
23 \( 1 - 7.49T + 23T^{2} \)
29 \( 1 + 1.90T + 29T^{2} \)
31 \( 1 + 2.38T + 31T^{2} \)
37 \( 1 - 6.23T + 37T^{2} \)
41 \( 1 + 5.58T + 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 - 0.953T + 47T^{2} \)
53 \( 1 + 9.03T + 53T^{2} \)
59 \( 1 + 8.44T + 59T^{2} \)
61 \( 1 + 4.32T + 61T^{2} \)
67 \( 1 - 3.85T + 67T^{2} \)
71 \( 1 + 7.71T + 71T^{2} \)
73 \( 1 - 6.47T + 73T^{2} \)
79 \( 1 - 0.527T + 79T^{2} \)
83 \( 1 + 4.40T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 + 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.656813320704953835499239449511, −9.298199611234629912714140487841, −8.203329384540423732039058157585, −7.17473845795276278684006668830, −6.02834173101124052852634614832, −5.65553740590037072979261575016, −4.74473700953626583185500342180, −3.58543709616698756572202238016, −2.94173549873966310970190057883, −1.28989780591299017530238660629, 1.28989780591299017530238660629, 2.94173549873966310970190057883, 3.58543709616698756572202238016, 4.74473700953626583185500342180, 5.65553740590037072979261575016, 6.02834173101124052852634614832, 7.17473845795276278684006668830, 8.203329384540423732039058157585, 9.298199611234629912714140487841, 9.656813320704953835499239449511

Graph of the $Z$-function along the critical line