Properties

Label 2-33e2-1.1-c1-0-25
Degree $2$
Conductor $1089$
Sign $1$
Analytic cond. $8.69570$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.64·2-s + 5.00·4-s − 2.64·5-s + 2·7-s + 7.93·8-s − 7.00·10-s + 5·13-s + 5.29·14-s + 11.0·16-s + 2.64·17-s − 13.2·20-s − 5.29·23-s + 2.00·25-s + 13.2·26-s + 10.0·28-s − 7.93·29-s + 4·31-s + 13.2·32-s + 7.00·34-s − 5.29·35-s − 3·37-s − 21.0·40-s + 2.64·41-s + 6·43-s − 14.0·46-s + 10.5·47-s − 3·49-s + ⋯
L(s)  = 1  + 1.87·2-s + 2.50·4-s − 1.18·5-s + 0.755·7-s + 2.80·8-s − 2.21·10-s + 1.38·13-s + 1.41·14-s + 2.75·16-s + 0.641·17-s − 2.95·20-s − 1.10·23-s + 0.400·25-s + 2.59·26-s + 1.88·28-s − 1.47·29-s + 0.718·31-s + 2.33·32-s + 1.20·34-s − 0.894·35-s − 0.493·37-s − 3.32·40-s + 0.413·41-s + 0.914·43-s − 2.06·46-s + 1.54·47-s − 0.428·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(8.69570\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1089,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.766651712\)
\(L(\frac12)\) \(\approx\) \(4.766651712\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - 2.64T + 2T^{2} \)
5 \( 1 + 2.64T + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
13 \( 1 - 5T + 13T^{2} \)
17 \( 1 - 2.64T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 5.29T + 23T^{2} \)
29 \( 1 + 7.93T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 3T + 37T^{2} \)
41 \( 1 - 2.64T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 - 10.5T + 47T^{2} \)
53 \( 1 - 7.93T + 53T^{2} \)
59 \( 1 + 5.29T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 + 10T + 67T^{2} \)
71 \( 1 + 15.8T + 71T^{2} \)
73 \( 1 + 10T + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 7.93T + 89T^{2} \)
97 \( 1 - 5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42050543841446949014843697780, −8.779446533560007743599347167638, −7.77594574784300739537262892995, −7.35922998547033483473724572447, −6.08939320500831878326768482673, −5.56139704051060845600743152726, −4.29707997991328737318830135800, −3.99480843407406712831031412201, −3.01381741469607397174690710148, −1.59089441543721140954265628235, 1.59089441543721140954265628235, 3.01381741469607397174690710148, 3.99480843407406712831031412201, 4.29707997991328737318830135800, 5.56139704051060845600743152726, 6.08939320500831878326768482673, 7.35922998547033483473724572447, 7.77594574784300739537262892995, 8.779446533560007743599347167638, 10.42050543841446949014843697780

Graph of the $Z$-function along the critical line